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ABSTRACT

Metamaterials are artificial materials, consisting of sub-wavelength building blocks, which

can show anomalous and exotic electromagnetic responses. Metal-based metamaterials, as the

first experimentally implemented metamaterials, have achieved significant progress in theory,

fabrication, and characterization over a broad frequency range from microwave to visible. To

alleviate the drawbacks of metal-based metamaterials, such as conductive loss and anisotropy,

non-metallic metamaterials have been proposed and developed rapidly in the last decade. This

thesis focuses on the analytical modeling and fabrication-tolerance analysis of non-metallic

metamaterials consisting of an array of magnetodielectric spheres. Here, the term “magnetodi-

electric” refers, generally, to materials with relative permittivity and permeability both much

greater than one, or to purely dielectric or magnetic materials.

The first half of this thesis presents the exact (within the dipole scattering approximation)

dispersion equations of traveling waves supported by three-dimensional (3D) periodic arrays

of two different magnetodielectric spheres arbitrarily arranged on a simple tetragonal lattice.

To improve the calculation efficiency, fast converging expressions and their double summation

form are derived for slowly converging summations in the dispersion equations. The present-

ed theory has been tested by comparing its dispersion diagrams with corresponding ones in

previous literature, and with those calculated by MIT Photonic-Bands (MPB). The dispersion

diagrams of seven different arrangements of the spheres are analyzed for three combination of

sphere types: 1) dielectric spheres with equal permittivity but different radius, 2) dielectric

spheres with equal radius but different permittivity and 3) one set of spheres is purely dielec-

tric while the other set is magnetic. Compared with results reported in previous literature,

analysis of these possible arrangements of the spheres shows similar narrow double negative

(DNG) bandwidths for spheres combinations 1) and 2), and wider DNG bandwidths for spheres

combination 3). Based on this theory, this thesis also develops a clear design procedure for
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DNG metamaterials consisting of 3D periodic arrays of two different magnetodielectric spheres

arranged on a simple tetragonal lattice. This procedure can give a design with widest possible

DNG bandwidth and prescribed effective constitutive parameters at the operating frequency.

Effects of parameter variations on negative effective constitutive parameters of non-metallic

metamaterials are analyzed in the second half of this thesis. These effects are evaluated in terms

of the variability in effective constitutive parameters around the DNG or single negative (S-

NG) region for given geometric and material parameters and their variations. Based on the

Clausius-Mossotti expressions for the effective (bulk) constitutive parameters of non-metallic

metamaterials, analytical expressions of variability of effective constitutive parameters depend-

ing on geometric and material parameters variations are developed using total differential. In

practice, these expressions can be used to estimate the performance of a non-metallic meta-

material with given parameter variations that might exist due to fabrication tolerances. Based

on these expressions, effects of parameter variations on effective constitutive parameters are

analyzed for three type of metamaterials: a) 3D cubic array of identical magnetodielectric

spheres; b) 3D cubic array of two different dielectric spheres with equal radius but different

permittivity; c) 3D cubic array of two different dielectric spheres with equal permittivity but

different radius. Results show that varying the following parameters impacts negative effective

constitutive parameters in the following order from most to least: 1) radius of spheres; 2) con-

stitutive parameters of spheres providing negative effective permittivity and/or permeability;

3) lattice constant of the array and the constitutive parameters of the array medium. For

three particular case studies, results show that the DNG behavior may be extinguished if there

are 0.78%, 0.0164%, and 0.0158% variations in all parameters of metamaterials a), b), and c),

respectively. A complete set of analytical expressions for derivatives of Mie scattering coeffi-

cients are also obtained in order to calculate the total differential of variabilities of effective

constitutive parameters of non-metallic metamaterials.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

The work presented in this thesis is within the research area of electromagnetic (EM)

metamaterials. Particularly, it is a development of non-metallic metamaterials.

1.1.1 Metamaterials

Every natural material may be regarded as a composite consisting of atoms and molecules.

The original purpose in defining permittivity/permeability was to give a homogeneous view

of the EM properties of a material in the presence of an applied electric/magnetic field,

whose wavelength is much larger than the inclusions. Following this trail, when the atoms

and molecules are replaced by large-scale structures, which are still much smaller than the

wavelength of the applied field, the entire composite can be treated, in a macroscopic view,

as a homogeneous medium with effective permittivity, εeff , and permeability, µeff , as shown in

Fig. 1.1. If εeff and µeff are unavailable in nature, the composite is a so-called “metamaterial”.

The prefix “meta” means “beyond”.

Figure 1.1 Metamaterials concept. Reprinted by permission from Macmillan Publishers Ltd:
[NATURE MATERIALS] [1], copyright (2006).
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Here, a rigid definition of metamaterials is given: metamaterials are artificially structured

composites, composed of sub-wavelength building blocks, with EM properties unavailable in

nature [2], [3].

EM metamaterials can be categorized into the following classes [2], [4]: 1) double negative

(DNG) metamaterials with both εeff and µeff negative, occupying the third quadrant in Fig. 1.2;

2) single negative (SNG) metamaterials with either εeff or µeff negative, the second and fourth

quadrants in Fig. 1.2; 3) EM bandgap metamaterials, which can control the propagation of EM

waves; 4) bi-isotropic and bi-anisotropic metamaterials, in which backward waves and forward

waves can exist simultaneously; and 5) chiral metamaterials, which can support backward wave

propagation without SNG or DNG.

Figure 1.2 Classification of metamaterials [2].

Possible applications of metamaterials include achieving subdiffraction imaging by a su-

perlens [5], Fig. 1.3(a), cloaking of objects from EM fields [6]-[8], Fig. 1.3(b), and improving

performance of antennas [9], Fig. 1.3(c). Although metamaterials were first accomplished in

electromagnetics, the idea of metamaterials has already been extended into acoustics and seis-

mology, and yielded many interesting outcomes, such as acoustic cloaking [10] and shielding

objects from earthquakes [11].

In academia, research in metamaterials is interdisciplinary and includes such areas as elec-

tromagnetics, optics, materials science, solid state physics, acoustics, and seismology, etc.
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Figure 1.3 Possible applications of metamaterials. (a) Superlens. Reprinted by permission
from Macmillan Publishers Ltd: [NATURE MATERIALS] [12], copyright (2008).
(b) Cloak. From [6]. Reprinted with permission from AAAS. (c) Improving direc-
tivity of antenna [13]. c© [2012] IEEE.

1.1.2 Metal-based metamaterials

The first metamaterial achieved experimentally consisted of an array of thin metal wires,

which provide negative εeff , and double split-ring resonators (SRR), which provide negative

µeff , at gigahertz frequencies [14], Fig. 1.4. In this structure, the incident EM waves have

to propagate parallel to the sample surface [14]. Since the magnetic resonance frequency of

SRR is inversely proportional to its size, this scheme was simply scaled down from microwave

frequencies to higher frequencies [15]. To increase operation bandwidth and decrease losses,

metamaterials consisting of periodically L-C loaded transmission lines at microwave frequencies

were proposed [16], [17], Fig. 1.4. However, it’s challenging to implement this scheme in higher

frequencies due to the fabrication of high frequency capacitors and inductors. For ease of

fabrication, double SRR was replaced by single SRR, which works up to about 200 THz [18],

Fig. 1.4. Further, metallic cut-wire pairs, providing both negative εeff and µeff , were achieved

in optical regime, for the light propagating normal to the sample surface [19]-[21], Fig. 1.4.

In the optical and visible regime, double-fishnet structures were applied widely to achieve an

effective negative refractive index for light propagating normal to the layers [22]-[24], Fig. 1.4.

To alleviate metallic conduction loss, these structures operating in optical and visible regime

are fabricated by low-loss metals, such as silver [24]. In conclusion, drawbacks of metal-based

metamaterials include conduction loss and anisotropy [3].
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Figure 1.4 Development of metal-based metamaterial as a function of operation frequency and
time. Orange: double SRRs; purple: transmission-Line structures [17], copyright
(2004) by the American Physical Society; green: U-shaped SRRs; blue: metallic
cut-wire pairs; red: double fishnet structures. The five insets show optical or
electron micrographs of the five kinds of structure. Reprinted by permission from
Macmillan Publishers Ltd: [NATURE PHOTONICS] [3], copyright (2011).

1.1.3 Non-metallic metamaterials

Non-metallic metamaterials are the focus of this thesis. To avoid the drawbacks of metal-

based metamaterials, three-dimensional (3D) arrays of non-metallic inclusions have been pro-

posed as an alternative to metal-based metamaterials [25]. In such a scheme, the negative

constitutive parameters are designed to appear in a frequency band above the Mie resonances

of the inclusions: the negative εeff is designed to appear in a frequency band above the resonance

of the Mie electric dipole scattering coefficient whereas negative µeff is designed to appear in

a frequency band above the resonance of the Mie magnetic dipole scattering coefficient, and

double negative (DNG) is designed to appear in a frequency band above the overlap of reso-

nances of Mie electric and magnetic dipole scattering coefficients. The particles usually have

the following combinations: 1) one set of magnetodielectric particles with values of relative

permittivity and permeability much greater than one and close to each other; 2) two different

dielectric particles with equal permittivity but different size; 3) and two different dielectric

particles with equal size but different permittivity. In theory, the particles analyzed are com-
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monly spherical but, in practice, particles are usually fabricated as cubes or cylinders for ease

of fabrication. To meet the criteria of homogenization, which may be stated in the form that

the lattice constant is much smaller than the operating wavelength, the relative permittivity

of the dielectric particles should be much greater than 1, e.g. εr > 200.

Non-metallic metamaterials can be modeled by both analytical and numerical methods.

Analytical methods include mixing formulas [26]-[32] and scattering-matrix based methods [31]-

[38]. In these methods, the particle is modeled by either an electric dipole, which is parallel

to the applied electric field, or a pair of crossed electric and magnetic dipoles, which are

parallel to the electric and magnetic fields, respectively, of the applied EM wave. These dipoles

are the leading terms in the multipole series, and the only existing ones for a homogeneous

sphere, whose polarisabilities can be easily obtained from the Mie scattering coefficients [39].

In general, this procedure is known as the “point-dipole approximation” [40], which is a good

approximation for metamaterials consisting of arrays of electrically small spheres [2]. Such an

approximation restricts the application of these methods to arrays of spheres, however. Merits

of these methods include low calculation cost and mathematical simplicity.

Many classical numerical methods, such as finite-difference time-domain (FDTD) [41], [42],

finite element method (FEM) [43], and method of moments (MOM) [44] have been applied

to model non-metallic metamaterials and achieved reasonable accuracy compared with mea-

surement results. Different from analytical methods, numerical methods are able to account

for scattering elements (inclusions) with arbitrary geometric shape. Disadvantages of these

methods include high computation cost and mathematical complexity.

Although non-metallic metamaterials alleviate the drawbacks of metal-based metamateri-

als, their practical implementations still meet challenges from the restricted range of naturally-

occurring electromagnetic material parameters (permittivity and permeability) at desired fre-

quencies, and fabrication tolerances. For example, magnetodielectric materials with values of

relative permittivity and permeability much greater than one are not currently available above

1 GHz. Dielectric materials with relative permittivity much greater than 1 are currently un-

available in the optical regime. To overlap the electric and magnetic Mie resonances, which

are very narrow, provided by two different dielectric particles, the permittivities or sizes of the
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particles require extremely tight fabrication tolerances, e.g. less than 1%.

The work presented in this thesis focuses on modeling non-metallic metamaterials based on

the point-dipole approximation. Using a scattering-matrix based method, two-sphere arrays

with arbitrary arrangements have been modeled. Based on these models, effects of fabrication

tolerances on the performance of different arrays have been analyzed.

1.2 Thesis Organization

The thesis can be divided into two parts. Chapters 1 and 2 present analytical models for non-

metallic metamaterials consisting of two-sphere arrays, while Chapters 3 and 4 present analysis

of effects of fabrication tolerances on DNG/SNG performance of non-metallic metamaterials.

Chapter 1 develops the exact (within the dipole scattering approximation) k−β (dispersion)

equations of traveling waves supported by 3D periodic arrays of two sets of magnetodielectric

spheres arbitrarily arranged on a simple tetragonal lattice. Based on this theory, Chapter 2

presents a rational design procedure for DNG metamaterials consisting of 3D periodic arrays

of two different non-metallic spheres arranged on a simple tetragonal lattice.

In Chapter 3, the analytical expressions are derived for derivatives of Mie scattering co-

efficients with respect to the sphere size, relative permittivity and permeability of both the

sphere and medium, which are utilized in Chapter 4. Analytical expressions of variabilities

of effective (bulk) constitutive parameters of non-metallic metamaterials due to geometric and

electromagnetic material parameters variations are developed in Chapter 4 by computing the

total differential of Clausius-Mossotti expressions for the effective constitutive parameters.

1.3 Literature Review

In 1968, Veselago [45] introduced, for the first time, the concept of DNG metamaterials and

their potential application as a superlens with refractive index equal to negative one, which

can break the diffraction limit. However, no feasible experimental scheme was proposed to

fulfill this concept in the following twenty-eight years. In 1996, Pendry et al. [46] proposed

to use a 3D array of thin metal wires to decrease their plasma frequency, below which the
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permittivity of metal can be negative, into the far infrared or even microwave regime. Such

structure can exhibit a negative εeff below a very low plasma frequency, such as somewhere in

GHz band [46]. Three years later, Pendry et al. [5] proposed to utilize an array of non-magnetic

conducting double SRRs to achieve a negative permeability around its resonance frequency. In

2001, Shelby et al. [14] experimentally demonstrated the first DNG metamaterial consisting

of two-dimensional (2D) periodic arrays of metal wire and double SRRs in the X-band. Since

then, the area of metamaterials has received a lot of attention and has progressed rapidly over

the last decade.

As mentioned in Section 1.1.2, significant progress has been achieved in theory, fabrication,

and characterization of metal-based metamaterials in microwave/millimeter wave, THz, optical,

and visible regimes. Since the focus of this thesis is non-metallic metamaterials, the following

part of this review concentrates on the topic of non-metallic metamaterials.

1.3.1 Theoretical schemes

Figure 1.5 Development of theoretical schemes of non-metallic metamaterials. Different colors
indicate different materials for inclusions. Purple: magnetodielectric; blue: purely
dielectric material with larger permittivity; white: purely dielectric material with
smaller permittivity; green: metal; pink: purely magnetic.

Using Lewin’s model [47], Holloway et al. [25] showed, theoretically, that a DNG meta-

material can be formed by an array of non-metallic, magnetodielectric spheres with relative

permittivity and permeability much greater than one and similar to each other, Fig. 1.5(a).
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In this scheme, the negative permittivity and permeability are provided by the resonances of

Mie electric and magnetic dipole scattering coefficients of the magnetodielectric spheres. Since

such magnetodielectric materials are currently not available above 1 GHz, this scheme cannot

presently be practically accomplished in microwave and higher frequency ranges. Based on

this idea, however, several alternative but more practical approaches have proposed to form

non-metallic metamaterials. These are listed as follows:

(1) Based on the generalized Lewin’s model and FDTD calculations, Vendik and Gashinova

[48] proposed that non-metallic metamaterials can be formed by an array of two different

dielectric spheres with equal permittivity but different size, Fig. 1.5(b);

(2) Using FDTD simulation, Ahmadi and Mosallaei [41] showed that non-metallic metama-

terials can be formed by an array of two different dielectric spheres with equal size but

different permittivity, Fig. 1.5(h);

(3) Based on the dispersion equations developed through scattering-matrix method and point-

dipole approximation, as described in Section 1.1.3, Shore and Yaghjian [32] showed that

non-metallic metamaterials can be formed by interpenetrating arrays of purely dielectric

and purely magnetic spheres, Fig. 1.5(f);

(4) Using a method generalized from that in scheme (3), Chapter 2 of this thesis [38] analyzed

the backward wave and DNG bandwidths of seven different arrangements of spheres for

three combinations of sphere types, Fig. 1.5(j).

(5) Peng et al. [49] theoretically demonstrated that by using displacement currents in dielec-

tric resonators to mimic the conductive currents in thin metal wires and SRRs, a DNG

metamaterial can be formed by an array of high dielectric cylindrical resonators, Fig. 1.5(d);

(6) An array of dielectric spheres, which provide negative permeability, combined with metal

wires or dielectric rods, which provide negative permittivity below the plasma frequency,

were proposed to form DNG metamaterial [50], [51], Fig. 1.5(e);
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(7) Using Claussius-Mossotti mixing rules, Seo et al. [52] proposed to realize a non-metallic

metamaterial by randomly embedding dielectric spheres in a negative permittivity plas-

monic host material, Fig. 1.5(g);

(8) Utilizing a method developed from that in scheme (3), Ghadarghadr and Mosallaei [53]

showed that a non-metallic metamaterial can be formed by randomly embedding dielectric

spheres in a negative permeability host material with Lorentzian behavior, Fig. 1.5(i);

(9) Using an extended Clausius-Mossotti formula, Wheeler [54] demonstrated that a collection

of polaritonic spheres coated with a thin layer of Drude material can show DNG behavior

at infrared frequencies, Fig. 1.5(c).

Although purely dielectric materials with relative permittivity much greater than one are al-

ready available to form metamaterials based on schemes (1) and (2), it still very challenging to

fabricate them due to their narrow DNG bandwidths requiring tight fabrication tolerances [38].

Since magnetic materials with relative permeability much greater than one above 1 GHz are

currently unavailable for scheme (3), it cannot be practically fulfilled in microwave and higher

frequency ranges despite the fact that this scheme gives much wider DNG bandwidths than

those of schemes (1) and (2) [38]. Since the negative permittivity of scheme (6) is provided by

the metal wires or dielectric rods, at frequencies below their plasma frequency, and only one set

of Mie resonances is applied, this scheme has a looser fabrication tolerance. In schemes (5) and

(6), due to the use of metal wires or dielectric rods, the incident EM waves have to propagate

normal to the wires or rods. Since the negative permittivity and permeability of schemes (7)

and (8), respectively, provided by the host material are negative over a wide frequency range

and only one set of Mie resonances is utilized, these schemes have a looser fabrication tolerance.

1.3.2 Experiments

Based on the schemes presented in Section 1.3.1, many works have been carried out to

experimentally fulfill non-metallic metamaterials. These are listed as follows:

(1) Holloway et al. [55] experimentally demonstrated that a metafilm consisting of spherical

magnetodielectric (Yttrium Iron Garnet or YIG) particles exhibits negative electric and
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Figure 1.6 Development of experimental works of non-metallic metamaterials. (a) [49]. Copy-
right (2007) by the American Physical Society. (b) [57]. Copyright (2008) by the
American Physical Society. (c) [59]. Copyright (2009) by the Optical Society of
America. (d) [60]. Copyright (2010) by Metamorphose-VI. (e) [62]. Reprinted with
permission from [62]. Copyright [2011], American Institute of Physics. (f) [58].
Copyright (2012) by the American Physical Society. (g) [50]. Reprinted from [50],
Copyright (2008), with permission from Elsevier. (h) [64]. Reprinted with permis-
sion from [64]. Copyright [2009], American Institute of Physics. (i) [55]. Copyright
(2010) by The Institution of Engineering and Technology. (j) [51]. Reprinted with
permission from [51]. Copyright [2011], American Institute of Physics.

magnetic surface susceptibilities, which are equivalent to the effective constitutive param-

eters of 3D homogenous (bulk) metamaterials, at 2.724 GHz, Fig. 1.6(i). Holloway et al.

[56] also emphasized that these surface susceptibilities are the most appropriate quantities

that can be utilized to characterize a metafilm since its thickness is not well-defined;

(2) Zhao et al. [57] experimentally realized a cubic array of Ba0.5Sr0.5TiO3 (BST) cubes with

isotropic negative µeff from 8.53 to 8.85 GHz, Fig. 1.6(b). Ginn et al. [58] demonstrated an

all-dielectric metamaterial, in the midinfrared, composed of a 2D array of tellurium cubes

with magnetic behavior around 9 µm, Fig. 1.6(f);

(3) Lai et al. [59] showed that an array of two sets of zirconia cubes with different sizes exhibit

negative refractive index around 5.84 GHz, Fig. 1.6(c);

(4) Carroll et al. [60] realized DNG around 17 GHz using an array of (Zr, Sn)TiO4 (ZST) and

(Mg, Ca)Ti3 (MCT) spheres arranged on a ROHACELL R© 31HF foam matrix, Fig. 1.6(d);
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(5) Lepetit et al. [61] showed that an array of two different BaxSr1−xTi1−yMnyO3 (BST/Mn)

rods exhibit DNG behavior around 10.6 GHz. The same group also demonstrated that an

array of identical BST/Mn rods can provide either negative εeff or µeff [62], Fig. 1.6(e);

(6) Peng et al. [49] demonstrated that a collection of randomly or periodically arranged BST

rods can show negative refractive index around 7 GHz, Fig. 1.6(a);

(7) Cai et al. [50] showed that an array of BaCO3-TiO2 spheres in combination with a wire

frame exhibits DNG behavior around 6 GHz, Fig. 1.6(g). Ma et al. [63] demonstrated

that an array of rectangular SrTiO3 (STO) resonators and metal wires can show DNG

behavior around 9.8 GHz. Wang et al. [51] demonstrated that an array of Ba0.6Sr0.4TiO3-

La(Mg0.5-Ti0.5)O3 cubes and square rods can show DNG behavior between 9.97 and 10.4

GHz, Fig. 1.6(j);

(8) Limberopoulos et al. [64] fabricated and characterized an isotropic 3D metamaterial com-

posed of silicon carbide (SiC) nanoparticles embedded randomly in the polycrystalline

magnesium diboride (MgB2) host. It exhibits DNG behavior at 632 nm, Fig. 1.6(h).

In (1), Holloway et al. experimentally accomplished their original theoretical design of non-

metallic metamaterials in the form of a 2D metafilm. Parts of the work listed in (2), (3),

and (7) fabricated the scattering unit as a cube instead of a sphere for ease of fabrication, as

mentioned in Section 1.1.2. SNG was achieved in (2) since only one set of dielectric cubes

were employed. Experimental schemes (3), (4), (6), (7), and (8) are the implementations of

theoretical schemes (1), (2), (5), (6), and (7), respectively, discussed in Section 1.3.1. Note

that although experimental schemes (5) and (6) both applied dielectric rods to achieve DNG,

they are based on different theoretical schemes. Samples in (5) were designed according to Mie

theory while those of (6) were designed based on theoretical scheme (5) of Section 1.3.1.

1.4 Conclusion and Outlook

As an alternative scheme to achieve EM metamaterials, non-metallic metamaterials have

the advantages of low-loss and isotropy compared with their metal-based counterpart. Over
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the last decade, many analytical and numerical methods have been applied to analyze the

non-metallic metamaterials while only several reasonable experimental fabrication and charac-

terization works have been achieved at microwave frequencies. The experimental implemen-

tations of non-metallic metamaterials at higher frequencies are restricted to the availability

of magnetodielectric materials or dielectric materials with high permittivity and low loss. If

this restriction is overcome by developments in materials science and engineering, it may be-

come possible to realize low-loss 3D isotropic metamaterials consisting of a random collection

of magnetodielectric particles in microwave and higher frequency ranges.
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CHAPTER 2. TRAVELING WAVES ON THREE-DIMENSIONAL

PERIODIC ARRAYS OF TWO DIFFERENT MAGNETODIELECTRIC

SPHERES ARBITRARILY ARRANGED ON A SIMPLE TETRAGONAL

LATTICE

A paper published in IEEE Transactions on Antennas and Propagation

Yang Li, Nicola Bowler

2.1 Abstract

Based on Shore and Yaghjian’s work [R. A. Shore and A. D. Yaghjian, IEEE Trans. Anten-

nas Propag., vol. 57, no. 10, pp. 3077-3091, Oct. 2009.], a general theory has been developed

to describe traveling waves on three-dimensional (3D) periodic arrays of two sets of magnetodi-

electric spheres arbitrarily arranged on a simple tetragonal lattice. This theory is eventually

in the form of k − β (dispersion) equations. To improve the computational efficiency, rapid-

ly converging expressions and their double summation form are derived for slowly converging

summations in the k − β equations. The dispersion diagrams of seven different arrangements

of the spheres are analyzed for three combinations of sphere types: i) dielectric spheres with

equal permittivity but different radius, ii) dielectric spheres with equal radius but different

permittivity and iii) one set of spheres is purely dielectric while the other set is magnetic.

Results show that the maximum bandwidths of the DNG region provided by different spheres

arrangements for spheres combinations i) to iii) are, respectively, 0.21%, 0.069%, and 7.403%.

Compared with results reported in previous literature, analysis of these possible arrangements

of the spheres shows similar narrow DNG bandwidths for spheres combinations i) and ii), and

wider DNG bandwidths for spheres combination iii). Although purely dielectric materials with
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relative permittivity much greater than one are readily available, the usefulness of purely di-

electric DNG metamaterials still depends on whether the narrow bandwidths achievable are

acceptable for the particular applications. Since purely magnetic materials with relative per-

meability much greater than one above 1 GHz are not currently available, the practicality of

fabricating DNG metamaterials using arrays with spheres combination iii) is questionable for

radio frequency (RF) applications, at least at present, despite the fact that this combination

yields much wider DNG bandwidths than those of spheres combinations i) and ii).

2.2 Introduction

Since Shelby et al. [1] experimentally realized DNG materials—-those with negative real

parts of effective permittivity and permeability—-for the first time following Pendry’s theoret-

ical scheme [2], [3], significant progress has been achieved both in the theoretical development

and practical application of metamaterials [4], such as achieving sub-diffraction imaging by a

‘perfect’ lens [5], cloaking of objects from electromagnetic fields [6]-[8], and improving perfor-

mance of antennas [9], [10].

Present realizations of metamaterials often employ sub-wavelength resonant metallic ele-

ments, such as metallic split ring resonators combined with wires [1], short wire pairs [11], and

fishnet structures [12], etc. The drawbacks of metal-based metamaterials include conduction

loss, anisotropy, and fabrication challenge in the infrared and optical frequency range.

In a contrasting approach, Holloway et al. [13] demonstrated, theoretically, that a D-

NG metamaterial can be formed by a 3D periodic array of non-conductive, magnetodielectric

spheres with values of relative permittivity and permeability much greater than one and close

to each other. Further, several complementary approaches have been proposed to form non-

conductive DNG metamaterials. Examples of these, close to the configurations of this work,

are 3D periodic arrays of two sets of dielectric spheres either with the same permittivity but

different radius [14]-[17] ([17] contains a considerable number of mostly typographical mistakes

which have been corrected in [18]), or with the same radius but different permittivity [17]-[19],

or with one set of spheres being purely dielectric and the other set being magnetic [17]. Other

examples employ dielectric spheres embedded randomly in a negative permittivity plasmonic
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host material [20] or embedded inside a ferrite material with negative permeability [21], or em-

ploy coated nonmagnetic spheres [22]-[24]. All these works focus on the combination of spheres

and host materials or different core-shell combinations rather than the arrangement of spheres.

This paper presents the exact (within the dipole scattering approximation) k−β (dispersion)

equations of traveling waves supported by 3D periodic arrays of two sets of magnetodielectric

spheres arbitrarily arranged on a simple tetragonal lattice. Although the two different magne-

todielectric spheres can be arbitrarily arranged on a simple tetragonal lattice, the real concern

of this paper is with periodic arrays whose tetragonal unit cells contain four of each of the two

different spheres, Fig. 2.1. Here, the term “magnetodielectric” refers to spheres with relative

permittivity and permeability both greater than one, or purely dielectric/magnetic spheres, or

perfect conducting spheres. The k−β equation relates the propagation constant, β, of the wave

traveling in the direction of the array axis, to the free-space wavenumber, k. Harmonic time

dependence of exp(−iωt) is assumed in this paper. It is an extension of Shore and Yaghjian’s

systematic works describing traveling waves on linear, 2D, and 3D periodic arrays of acoustic

monopoles, electric dipoles, and magnetodielectric spheres [17], [25]-[33]. The developments of

this work include the derivation of k − β equations of traveling waves on 3D periodic arrays

of two different magnetodielectric spheres arbitrarily arranged on a simple tetragonal lattice,

Fig. 2.2, which goes beyond previous work in which only arrangements (b) and (g), Fig. 2.1,

have been considered [21] and [17], respectively. The analysis is supported by the derivation

of rapidly converging expressions and their double summation form for the slowly converging

summations in the k − β equations using Floquet mode expansions and expressions for the

rapid summation of Schlömilch series. The paper is arranged as follows. Section 2.3 gives the

Figure 2.1 Seven different arrangements of four 1-spheres (dark) and four 2-spheres (pale)
within the unit cell.

derivation of k − β equations. Verification of the presented theory and performance analysis
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of arrays with different arrangements of spheres, Fig. 2.1, are given in Section 2.4. Rapidly

converging expressions and their double summation form are derived in Appendices 2.6 and

2.7, respectively.

2.3 Theory

Figure 2.2 Two sets of spheres and unit cell geometry.

In this theory, two sets of magnetodielectric spheres are arbitrarily arranged on each lattice

point of the unit tetragon. One set of spheres with relative permittivity εr1, relative perme-

ability µr1, and radius a1 will be referred to as “1-spheres” while the other set with relative

permittivity εr2, relative permeability µr2, and radius a2 will be referred to as “2-spheres”.

The z axis is chosen as the array axis in which the height of each unit cell lies, as shown in

Fig. 2.2. The cross-section of each unit cell is normal to the z axis with equal length and

width in the x and y directions, respectively. In the planes z = 2nd, n = 0,±1,±2, · · · or

z = (2n− 1) d, n = 0,±1,±2, · · · , either set of spheres could be centered at [x = 2mh, y = 2lh],

[x = (2m− 1)h, y = 2lh], [x = 2mh, y = (2l − 1)h], or [x = (2m− 1)h, y = (2l − 1)h] , l,m =

0,±1,±2, · · · . Seven different arrangements of four 1-spheres and four 2-spheres on the vertices

of the unit cell are shown in Fig. 2.1. Note that analysis of the arrangements (b) and (g) are

given in [21] and [17], respectively, but the other arrangements have not been studied previous-

ly. Also note that the k − β equation for any other arrangement of a total of eight 1-spheres

and 2-spheres on the vertices of the unit cell, in addition to those seven, can be easily derived

based on the presented theory. Indeed, it is unnecessary to have four of each type of sphere, in

the theory presented here.
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Following Shore and Yaghjian’s [30] approach, each sphere is modeled by a pair of crossed

electric and magnetic dipoles, which are oriented in the x and y directions, respectively. It

is assumed that the array is excited by a wave traveling in the z direction, with the electric

field parallel to the x axis and magnetic field parallel to the y axis, and that all the spheres

are excited identically apart from a phase factor. In the presence of the excitation, let E0
0 and

H0
0 be the electric and magnetic fields, respectively, that are incident on the sphere at position

(x, y, z) = (0, 0, 0) from all the other spheres in the array. E0
0 and H0

0 are obtained by summing

the electric and magnetic fields that are incident on the reference sphere from all the other

spheres of the array.

According to [30, Eqs. (9.1) to (9.28)], the x-directed electric dipole field at (0,0,0) from a

unit x-directed electric dipole at (mh, lh, nd) multiplied by (kh)3 is [17, Eq. (2.1)]

f1(m, l, n, kh, d/h, 0) =
eikhρ

ρ

[
−2i

ρ

(
kh+

i

ρ

)
m2

ρ2
2eq1 +

(
(kh)2 +

ikh

ρ
− 1

ρ2

)
l2 + (nd/h)2

ρ2

]
(2.1)

where

ρ =
√
m2 + l2 + (nd/h)2, (2.2)

and the x-directed electric dipole field at (0,0,0) from a unit y-directed magnetic dipole at

(mh, lh, nd) multiplied by (kh)3 is [17, Eq. (2.3)]

f2(m, l, n, kh, d/h, 0) =
eikhρ

ρ

(
(kh)2 +

ikh

ρ

)
nd/h

ρ
. (2.3)

Let

Σ1n(kh, d/h, 0)
n6=0
=

∞∑
m,l=−∞

f1(m, l, n, kh, d/h, 0), (2.4a)

Σ1s(kh, 0) =

∞∑
m,l=−∞

(m,l) 6=(0,0)

f1(m, l, 0, kh, 0, 0), (2.4b)

Σ2n(kh, d/h, 0) =

∞∑
m,l=−∞

f2(m, l, n, kh, d/h, 0), (2.4c)

Σ3n(kh, d/h, 0)
n 6=0
=

∞∑
m,l=−∞

f1(m− 1/2, l − 1/2, n, kh, d/h, 0), (2.4d)
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Σ3s(kh, 0) =

∞∑
m,l=−∞

(m,l) 6=(0,0)

f1(m− 1/2, l − 1/2, 0, kh, 0, 0), (2.4e)

Σ4n(kh, d/h, 0) =
∞∑

m,l=−∞
f2(m− 1/2, l − 1/2, n, kh, d/h, 0), (2.4f)

Σ5n(kh, d/h, 0)
n6=0
=

∞∑
m,l=−∞

f1(m− 1/2, l, n, kh, d/h, 0), (2.4g)

Σ5s(kh, 0) =
∞∑

m,l=−∞
(m,l)6=(0,0)

f1(m− 1/2, l, 0, kh, 0, 0), (2.4h)

Σ6n(kh, d/h, 0) =
∞∑

m,l=−∞
f2(m− 1/2, l, n, kh, d/h, 0), (2.4i)

Σ7n(kh, d/h, 0)
n6=0
=

∞∑
m,l=−∞

f1(m, l − 1/2, n, kh, d/h, 0), (2.4j)

Σ7s(kh, 0) =
∞∑

m,l=−∞
(m,l)6=(0,0)

f1(m, l − 1/2, 0, kh, 0, 0), (2.4k)

and

Σ8n(kh, d/h, 0) =
∞∑

m,l=−∞
f2(m, l − 1/2, n, kh, d/h, 0). (2.4l)

Note that (2.4a) to (2.4f) are given in [17, Eq. (2.4)]. Then the total x-directed electric

dipole field at (0,0,0) multiplied by (kh)3 is the sum of contributions from all the other spheres

of the array. Those contributions will be different for different arrangements of 1-spheres

and 2-spheres. Here, those for arrangement (g), Fig. 2.1, are given in (2.5) as an example.

Accordingly, similar derivations can be made for other arrangements. It should be noted that,

different from [17, Eq. (2.5)], the summations over m even and l odd, as well as m odd and l

even are given directly using (2.4g) to (2.4l) here. In [17, Eq. (2.5)], the sum of the summations

over m even and l odd, and m odd and l even is treated as the summation over all m and l

minus the sum of the summations over m and l both even and over m and l both odd. The

approach taken here simplifies the mathematical expressions and improves the computational
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efficiency. The contributions of the different subsets of the array spheres to the total x-directed

electric dipole field at the origin multiplied by (kh)3 are as follows:

1. x-directed electric dipoles of the 1-spheres in the nth plane, n even, n 6= 0

be1,n
1

8
(Σ1n(2kh, d/2h, 0) + Σ3n(2kh, d/2h, 0)) ; (2.5a)

2. x-directed electric dipoles of the 1-spheres in the n = 0 plane

be1,0
1

8
(Σ1s(2kh, 0) + Σ3s(2kh, 0)) ; (2.5b)

3. y-directed magnetic dipoles of the 1-spheres in the nth plane, n even, n 6= 0

bm1,n
1

8
(Σ2n(2kh, d/2h, 0) + Σ4n(2kh, d/2h, 0)) ; (2.5c)

4. y-directed magnetic dipoles of the 1-spheres in the n = 0 plane: zero;

5. x-directed electric dipoles of the 2-spheres in the nth plane, n even, n 6= 0

be2,n
1

8
(Σ5n(2kh, d/2h, 0) + Σ7n(2kh, d/2h, 0)) ; (2.5d)

6. x-directed electric dipoles of the 2-spheres in the n = 0 plane

be2,0
1

8
(Σ5s(2kh, 0) + Σ7s(2kh, 0)) ; (2.5e)

7. y-directed magnetic dipoles of the 2-spheres in the nth plane, n even, n 6= 0

bm2,n
1

8
(Σ6n(2kh, d/2h, 0) + Σ8n(2kh, d/2h, 0)) ; (2.5f)

8. y-directed magnetic dipoles of the 2-spheres in the n = 0 plane: zero;

9. x-directed electric dipoles of the 1-spheres in the nth plane, n odd

be1,n
1

8
(Σ5n(2kh, d/2h, 0) + Σ7n(2kh, d/2h, 0)) ; (2.5g)

10. y-directed magnetic dipoles of the 1-spheres in the nth plane, n odd

bm1,n
1

8
(Σ6n(2kh, d/2h, 0) + Σ8n(2kh, d/2h, 0)) ; (2.5h)
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11. x-directed electric dipoles of the 2-spheres in the nth plane, n odd

be2,n
1

8
(Σ1n(2kh, d/2h, 0) + Σ3n(2kh, d/2h, 0)) ; (2.5i)

12. y-directed magnetic dipoles of the 2-spheres in the nth plane, n odd

bm2,n
1

8
(Σ2n(2kh, d/2h, 0) + Σ4n(2kh, d/2h, 0)) . (2.5j)

The coefficients be1,n, be2,n (bm1,n, bm2,n) in (2.5) are related to the electric (magnetic)

field E0n
0x (H0n

0y /Y0) incident on the 1-spheres and 2-spheres in the nth plane by the scattering

equations [17, Eq. (2.6)]

be1,n = Se1E
0n
0x , bm1,n = Sm1

H0n
0y

Y0
, be2,n = Se2E

0n
0x , bm2,n = Sm2

H0n
0y

Y0
(2.6)

where Se1, Sm1, Se2, and Sm2 are the normalized electric and magnetic dipole scattering coef-

ficients of the 1-spheres and 2-spheres, respectively, given by [17, Eq. (2.7)]

Se1 = −i
3

2
bsc11, Sm1 = −i

3

2
asc

11, Se2 = −i
3

2
bsc12, Sm2 = −i

3

2
asc

12. (2.7)

In (2.7), bsc1i and asc
1i are, respectively, the electric and magnetic Mie dipole scattering coefficients

[34, Sec. 9.25, Eqs. (11), (10)] for the i-spheres (i = 1, 2). Note that the theory given here is

equally applicable to any array elements that can be modeled by a pair of crossed electric and

magnetic dipoles perpendicular to the array axis [30]. Se1, Sm1, Se2, and Sm2 must be obtained

through other methods if the array elements are not magnetodielectric spheres.

Assuming that the array is excited by a traveling wave in the z direction with real or complex

propagation constant β, the coefficients be1,n, bm1,n, be2,n, and bm2,n in (2.5) are identical to

be1,0, bm1,0, be2,0, and bm2,0, respectively, other than a phase shift given by [17, Eq. (2.8)]

be1,n = be1,0einβd, bm1,n = bm1,0einβd, be2,n = be2,0einβd, bm2,n = bm2,0einβd. (2.8)

Substituting (2.8) into (2.5) and summing over n to obtain the total x-directed electric field

incident on the spheres at (0, 0, 0), the homogeneous equation in the four unknowns be1,0, bm1,0,

be2,0, and bm2,0 is obtained [17, Eq. (2.9)]

(kh)3E00
0x = (kh)3 be1,0

Se1
= A1be1,0 −A2bm1,0 +A3be2,0 −A4bm2,0. (2.9)
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In (2.9), Ai (i = 1, 2, ..., 4) are different for different arrangements of 1-spheres and 2-spheres

on the vertices of the unit cell. The expressions for Ai of arrangement (g), Fig. 2.1, are given

in (2.10). Since expressions of Ai for arrangements (a) to (f) are similar to (2.10), those terms

are summarized in Tables 2.1 to 2.4.

A1 =
1

8


∞∑

n=−∞
n6=0
n even

einβd (Σ1n(2kh, d/2h, 0) +Σ3n(2kh, d/2h, 0)) + (Σ1s(2kh, 0) + Σ3s(2kh, 0))

+

∞∑
n=−∞
n odd

einβd (Σ5n(2kh, d/2h, 0) +Σ7n(2kh, d/2h, 0))] , (2.10a)

A2 =
1

8


∞∑

n=−∞
n 6=0
n even

einβd (Σ2n(2kh, d/2h, 0) +Σ4n(2kh, d/2h, 0))

+
∞∑

n=−∞
n odd

einβd (Σ6n(2kh, d/2h, 0) +Σ8n(2kh, d/2h, 0))] , (2.10b)

A3 =
1

8


∞∑

n=−∞
n6=0
n even

einβd (Σ5n(2kh, d/2h, 0) +Σ7n(2kh, d/2h, 0)) + (Σ5s(2kh, 0) +Σ7s(2kh, 0))

+

∞∑
n=−∞
n odd

einβd (Σ1n(2kh, d/2h, 0) +Σ3n(2kh, d/2h, 0))] , (2.10c)

A4 =
1

8


∞∑

n=−∞
n 6=0
n even

einβd (Σ6n(2kh, d/2h, 0) +Σ8n(2kh, d/2h, 0))

+
∞∑

n=−∞
n odd

einβd (Σ2n(2kh, d/2h, 0) +Σ4n(2kh, d/2h, 0))] . (2.10d)

Similar to the derivation of (2.9), when the total y-directed magnetic field incident on the

sphere at (0, 0, 0), the total x-directed electric field incident on the sphere at (0, 0, d), and the
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total y-directed magnetic field incident on the sphere at (0, 0, d) are considered, three more

homogeneous equations in the four unknowns be1,0, bm1,0, be2,0, and bm2,0 are obtained [17,

Eqs. (2.11)-(2.13)]

(kh)3 H
00
0y

Y0
= (kh)3 bm1,0

Sm1
= −A2be1,0 +A1bm1,0 −A4be2,0 +A3bm2,0,

(2.11)

(kh)3E01
0x = (kh)3 be2,0

Se2
= A3be1,0 −A4bm1,0 +A1be2,0 −A2bm2,0,

(2.12)

and

(kh)3 H
01
0y

Y0
= (kh)3 bm2,0

Sm2
= −A4be1,0 +A3bm1,0 −A2be2,0 +A1bm2,0.

(2.13)

Since a solution to the system of four homogeneous equations exists if and only if the deter-

minant of the equation matrix is equal to zero, the k − β equation [17, Eq. (2.14)] is obtained

and shown in (2.14).

∣∣∣∣∣∣∣∣∣
(kh)3 − Se1A1 Se1A2 −Se1A3 Se1A4

Sm1A2 (kh)3 − Sm1A1 Sm1A4 −Sm1A3

−Se2A3 Se2A4 (kh)3 − Se2A1 Se2A2

Sm2A4 −Sm2A3 Sm2A2 (kh)3 − Sm2A1

∣∣∣∣∣∣∣∣∣ = 0. (2.14)

Rapidly converging expressions and their double summation form for the infinite summa-

tions in (2.10) are derived in Appendices 2.6 and 2.7, respectively. The double summations

give better accuracy and higher computational efficiency than the triple summations presented

in (2.10). For example, (2.35), (2.37), (2.46), and (2.48) in Appendix 2.7 as well as [17, Eqs.

(A.4), (A.14)] can be used to give the double summations in (2.10a). Similarly, the other ex-

pressions in Appendix 2.7 as well as (2.27), (2.33), (2.22), and (2.24) can be used for (2.10b)

to (2.10d).

For an array of lossless scatterers and real βd, using aforementioned double summation

form of the rapidly converging expressions, (2.14) can be solved for βd for a given kd by
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sweeping βd from 0 to π in suitable increments, noting that a change in sign of the real part

of the determinant indicates the position of a root. For the choice of increment, decreasing the

increment increases the accuracy, but at the expense of increasing the computation time. Also

note that pseudo-roots at βd = kd and βd = 2π − kd, due to the factor of cos(2βd)− cos(2kd)

in the denominator of some rapidly converging expressions, e.g. (2.35), should be ignored in

this procedure. For an array of lossy scatterers and complex βd, the root finding procedure of

(2.14) is more complicated and is discussed in [17] and [33].

2.4 Performance analysis of different arrays

In this section, the performance of 3D periodic arrays with different arrangements of 1-

spheres and 2-spheres on the vertices of the unit cell, Figs. 2.1 (a) to (g), is analyzed for three

combinations of sphere types. It should be noted that, different from arrangements (b) to (g),

Fig. 2.1, whose k − β diagrams are mirror-symmetric with respect to βd = π for 0 < βd < 2π

[27], that of arrangement (a) is mirror-symmetric with respect to βd = π/2 for 0 < βd < π.

The reason is that, in the range 0 < βd < π, if βd = (π/2− a) is a root of the k − β equation

of arrangement (a), then so is βd = (π/2 + a) a root. Thus, only the k − β diagrams for

0 < βd < π and 0 < βd < 2π are considered, respectively, for arrangements (a), and (b) to

(g). The presented results are obtained by solving (2.14) following the procedure mentioned

in the last paragraph of Section 2.3 with an increment of 10−4 in βd. Lossless spheres and a

cubic lattice (h = d) are assumed for all calculations. The tetragonal lattice (h 6= d) is not

considered here since it can only provide further change, compared with simple cubic lattice,

in the volume fraction for the case of two sets of dielectric spheres with equal permittivity but

different radius, which has already been investigated in previous work [17], [21] for arrangements

(g) and (b), Fig. 2.1, respectively. Except where noted, µ1 = µ2 = 1. The fractional bandwidth

of the backward wave or DNG region is defined as the width of the backward wave or DNG kd

interval divided by the average value of kd in that interval.
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2.4.1 Verification

First, the theory of Section 2.3 is tested for arrangements (a) to (g). The k − β diagrams

of arrangements (a) to (g), Fig. 2.1, with parameters εr1 = εr2 = 400, a2/a1 = 1.4291, and

(a1 + a2)/(2d) = 0.2271, are obtained by solving (2.14) with Tables 2.1 to 2.4 and compared

with those calculated using MIT Photonic-Bands (MPB) [35] and [17, Eq. (2.10)] in Fig. 2.3.

Good agreements are achieved. Note that MPB results for arrangements (a), (d), (f), and (g)

are only shown in the range of 0 < βd < π/2 instead of 0 < βd < π. The reason is that, in

MPB, the lattice constant in the array axis direction of these arrangements is set two times

larger than that of arrangements (b), (c), and (e) to guarantee the translational symmetry in

this direction. This means that the size of the corresponding reciprocal lattice in the Brillouin

zone of arrangements (a), (d), (f), and (g) is half the size of that of arrangements (b), (c),

and (e). This has been discussed in detail in the literature in the context of photonic band

structure theory [36], [37]. Also note that MPB gives several pass-bands around kd = 0.6 while

presented and [17] results show a band-gap in this region, which may due to the fact that MPB

accounts for all the possible polarizations in addition to the TEM mode of the electromagnetic

waves in 3D inhomogeneous structures [38], [39].

2.4.2 Two sets of dielectric spheres

Next, the performance of different arrangements of two sets of dielectric spheres with equal

permittivity but different radius is investigated. The relative permittivity of both spheres is

chosen as 214.28, following [17], and the ratio of the radius of the larger sphere to that of the

smaller sphere is 1.4294, which is obtained by the division of ka2 = 0.3054, corresponding to

the first electric dipole resonance, by ka1 = 0.2137, corresponding to the first magnetic dipole

resonance. Since a larger volume fraction will increase the coupling between the electric and

magnetic dipoles of the spheres so as to give a wider backward wave bandwidth [21], a large

volume fraction, vf = 0.3308 (a2/d = 0.49), is chosen. It should be noted that a larger vf

can be achieved by choosing a tetragonal lattice (h 6= d), but this is not investigated in detail

here since the focus of this paper is on the relative arrangements of the spheres. Backward
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wave and DNG regions and parameters are shown in Table 2.5. To treat two-spheres periodic

arrays macroscopically as a homogeneous medium with effective permittivity and permeability,

the condition kd′, βd′ � 1 must be met in which d′ is the period of the array. In practice

this can be relaxed to the condition that both βd′ and kd′ are less than approximately 1.

However, the period of a particular array may be different in different directions. For example,

arrangement (a), Fig. 2.1, has a period d′ = d, which is the separation of adjacent spheres, in

x and y directions, and a period d′ = 2d, which is the separation of two adjacent 1-spheres or

two adjacent 2-spheres, in the z direction. Since effective constitutive parameters should be

independent of the direction of the traveling wave [40], the homogenization criteria given by the

maximum period, which is 2kd, 2βd ≤ 1 i.e. kd, βd ≤ 0.5, is chosen for arrangements (a) to (g),

Fig. 2.1. Note that only when kd and βd are both less than about 0.5 can the negative slope

of the dispersion curve (backward wave) imply DNG behavior of the array. Consequently,

and following [33], both the entire backward wave region (the part of the dispersion curve with

negative slope) and the DNG region for which kd, βd ≤ 0.5 are reported here. (kd)u and (kd)l1

are the upper and lower values of kd, respectively, for the entire backward wave region, while

(kd)l2 is the lower value of kd for the portion of DNG region where βd ≤ 0.5. BW1 and BW2 are

the fractional bandwidths for the entire backward wave region and for the portion of the DNG

region where βd ≤ 0.5. As shown in Table 2.5, arrangements (c) and (d) give the widest BW1

and BW2, respectively. Note that all the backward wave and DNG regions in Table 2.5 are

around kd = 0.6233, which corresponds to the first magnetic dipole resonance of the 1-spheres

at ka1 = 0.2137 and the first electric dipole resonance of the 2-spheres at ka2 = 0.3054.

Table 2.6 shows the results for different arrangements of two sets of dielectric spheres with

equal radius but different permittivity. The relative permittivity of the 1-spheres is chosen to

be εr1 = 214.28, the value for which the first magnetic dipole resonance is at ka = 0.2137, and

the relative permittivity of the 2-spheres is chosen to be εr2 = 440.20, the value for which the

first electric dipole resonance is at ka = 0.2137. Similar to the previous example for spheres of

different radius, a large volume fraction, vf = 0.4928 (a/d = 0.49), is chosen. It can be seen

that arrangement (c) provides both the widest BW1 and BW2. Also, all the backward wave

and DNG regions in Table 2.6 are around kd = 0.4360, which corresponds to the first magnetic
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dipole resonance of the 1-spheres and the first electric dipole resonance of the 2-spheres, both

at ka = 0.2137.

Accounting for different arrangements of two sets of purely dielectric spheres, therefore, it

has been shown here that the maximum DNG bandwidth (BW2 = 0.21%) is not significantly

different from that reported in previous literature (BW2 = 0.169%) [17].

2.4.3 Dielectric and magnetic spheres

Different arrangements of one set of purely dielectric spheres and one of magnetic spheres,

with εr1 = µr2 = 214.28, εr2 = µr1 = 1, are now considered. The first magnetic dipole resonance

for 1-spheres and first electric dipole resonance for 2-spheres are both at ka = 0.2137. Backward

wave and DNG regions and parameters are shown in Table 2.7. Here, arrangement (b) yields

both the widest BW1 and BW2. As in Table 2.6, all the backward wave and DNG regions in

Table 2.7 occur at around kd = 0.4360, which corresponds to the resonance at ka = 0.2137.

In this case of mixed dielectric and magnetic spheres, different arrangements of spheres,

Fig. 2.1, yield quite different DNG bandwidths (3.599% ≤ BW2 ≤ 7.403%).

2.5 Conclusion

In this paper, exact (within the dipole scattering approximation) k−β (dispersion) equations

have been obtained for 3D periodic arrays of two different magnetodielectric spheres arbitrarily

arranged on a simple tetragonal lattice. Using Floquet mode expansions and expressions for

the rapid summation of Schlömilch series, rapidly converging expressions and their double

summation form have been derived to replace the slowly converging summations, in order to

improve the computational efficiency. The presented theory has been tested by comparing

its k − β diagrams with the corresponding one in [17] and those calculated by MPB. The

backward wave and DNG bandwidths of 3D periodic arrays with different arrangements of

spheres, Fig. 2.1, have been analyzed for various combinations of sphere types. In previous work,

only arrangements (b) and (g) have been analyzed [21], [17]. Results show that arrangements

(d), (c), and (b), Fig. 2.1, can provide, respectively, the widest DNG bandwidths 0.21%, 0.069%,

and 7.403% for spheres combinations i), ii), and iii) (see abstract), respectively. Compared
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with these reported in [17] with arrangement (g), 0.169%, 0.075%, and 2.891%, analysis of

those available arrangements of the spheres shows similar narrow DNG bandwidths for spheres

combinations i) and ii), and wider DNG bandwidths for spheres combination iii). This indicates

that 3D periodic arrays with different arrangements of two sets of dielectric spheres on a simple

tetragonal lattice yield similar narrow DNG bandwidths. Due at least partially to the fact that

the magnetic dipole resonances of the purely dielectric spheres coincide perfectly with the

electric dipole resonances of the purely magnetic spheres at all frequencies when εr1 = µr2 and

εr2 = µr1 = 1 [17], the backward wave and DNG bandwidths for this combination of spheres

are much wider than those of any of the 3D periodic arrays of two sets of purely dielectric

spheres. However, it is still, at least at present, not possible to fabricate non-metallic DNG

metamaterials for RF applications with this combination since purely magnetic materials with

relative permeability much greater than one are currently unavailable above 1 GHz.

Future developments of the present theory include the following aspects. First, DNG band-

widths for metamaterials composed of 3D periodic arrays of two different magnetodielectric

spheres arbitrarily arranged on lattices other than simple tetragonal lattice, such as body-

centered, face-centered, and diamond lattices may be analyzed. Second, considering that DNG

behavior is extinguished if the constituents exhibit losses above a certain threshold value [13],

[41], [42], 3D periodic arrays of two different lossy spheres can be studied by extension of the

theory presented here.

2.6 Appendix A

Derivation of rapidly converging expressions

In this Appendix, rapidly converging expressions for the infinite summations in (2.10) cor-

responding to (2.4g) to (2.4l) are derived. The derivations of those corresponding to (2.4a)

to (2.4f) are given in [17, Appendix A]. These derivations are all based on the work in [30] of

developing rapidly converging expressions to replace the slowly converging summations.

Referring to the derivation of [30, Eq. (5.64)] (see [30, Eqs. (5.23) to (5.64)]), but now

with the z axis, rather than the x axis, of the Cartesian coordinate system as the array axis,
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with (m− 1/2) substituted for m, and with (x, y, z) = (h/2, 0, |n|d) substituted for (x, y, z) =

(|n|d, 0, 0), the following is obtained:

Σ5n(kh, d/h, 0)
n6=0
= 2πikhei|n|kd − 2π

∞∑
m,l=−∞

(−1)m
[
(2πl)2 − (kh)2

]
× e−|n|(d/h)

√
(2π)2(m2+l2)−(kh)2√

(2π)2(m2 + l2)− (kh)2
, 0 < kh < 2π. (2.15)

Since from [30, Eq. (5.65)], it follows that, noting that summation over even n is equivalent to

doubling d,

∞∑
n=−∞
n 6=0
n even

einβdΣ5n(2kh, d/2h, 0) =− 4πikh− 4πkh
sin(2kd)

cos(2βd)− cos(2kd)

− 4π
∞∑
n=1

cos(2nβd)
∞∑

m,l=−∞
(m,l) 6=(0,0)

(−1)m
[
(2πl)2 − (2kh)2

]

× e−n(d/h)
√

(2π)2(m2+l2)−(2kh)2√
(2π)2(m2 + l2)− (2kh)2

.

(2.16)

Similarly, replacing the factor (−1)m by (−1)l gives

∞∑
n=−∞
n6=0
n even

einβdΣ7n(2kh, d/2h, 0) =− 4πikh− 4πkh
sin(2kd)

cos(2βd)− cos(2kd)

− 4π

∞∑
n=1

cos(2nβd)

∞∑
m,l=−∞

(m,l)6=(0,0)

(−1)l
[
(2πl)2 − (2kh)2

]

× e−n(d/h)
√

(2π)2(m2+l2)−(2kh)2√
(2π)2(m2 + l2)− (2kh)2

.

(2.17)

Note that Σ5s(kh, 0) given by (2.4h) represents the contribution from array scatterers in

the self-plane (n = 0) and that its rapidly converging expression for the self-column (l = 0),

Σ5ss(kh, 0), is different from that for the other column, Σ5sn(kh, 0). For this reason, they are

derived separately. For the non-self-column, from the derivation of [30, Eq. (4.44)] (see [30,

Eqs. (4.18) to (4.43)]) with m− 1/2 substituted for m, with l substituted for nd/h, and with
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(h/2, |l|h) substituted for (0, |n|d),

∞∑
m=−∞

f1(m− 1/2, l, 0, kh, 0, 0) =iπ(kh)2H
(1)
0 (|l|kh)

− 4
∞∑

m=−1

(−1)m
[
(2πm)2 − (kh)2

]
K0

(
|l|
√

(2πm)2 − (kh)2
)
.

(2.18)

Next, referring to [30, Eq. (4.45)]

Σ5sn(2kh, 0) =2πi(2kh)2
∞∑
l=1

H
(1)
0 (2lkh)

− 8
∞∑

m,l=1

(−1)m
[
(2πm)2 − (2kh)2

]
K0

(
l
√

(2πm)2 − (2kh)2
)
. (2.19)

For the self-column, from the derivation of [30, Eq. (4.55)] with m− 1/2 substituted for m,

Σ5ss(2kh, 0) = 4
∞∑
m=1

eikh(2m−1)

m− 1/2

−i

m− 1/2

(
2kh+

i

m− 1/2

)
. (2.20)

This sum is evaluated using [43, Eqs. 1.443(5), 1.444(6)] and [30, Eqs. (D8) to (D10)] with

the Clausen functions, Cli(a) (i = 2, 3), having the summation over m odd treated as the

summation over all m minus the summation over m even. Then

Σ5ss(2kh, 0) = 4πi(kh)2 + 32khCl2(kh)− 8khCl2(2kh) + 32Cl3(kh)− 4Cl3(2kh). (2.21)

Combining (2.19) and (2.21) leads to

Σ5s(2kh, 0) =2iπ(2kh)2
∞∑
l=1

H
(1)
0 (2lkh)− 8

∞∑
m,l=1

(−1)m
[
(2πm)2 − (2kh)2

]
×K0

(
l
√

(2πm)2 − (2kh)2
)

+ 4πi(kh)2 + 32khCl2(kh)

− 8khCl2(2kh) + 32Cl3(kh)− 4Cl3(2kh) (2.22)

with the Clausen functions Cl2(a) and Cl3(a) approximated by [17, Eq. (B1)]. The Clausen

functions Cl2(a) and Cl3(a) can also be obtained from the dilogarithm and trilogarithm func-

tions, respectively [18, Correction 26].
∑∞

l=1H
(1)
0 (2lkh) can be efficiently evaluated by [17, Eqs.

(B2), (B3)]. The series including zeroth order modified Bessel function of the second kind, K0,

converges very fast due to the exponential decay of this function.
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The term Σ7s(kh, 0) given by (2.4k) involves summation over l odd which means that its

rapidly converging expression includes no self-column term. Following the derivation of [6, Eq.

(4.44)] with l − 1/2 substituted for nd/h, and (0, |l − 1/2|h) substituted for (0, |n|d),

∞∑
m=−∞

f1(m, l − 1/2, 0, kh, 0, 0) =iπ(kh)2H
(1)
0 (|l − 1/2|kh)

− 4
∞∑
m=1

[
(2πm)2 − (kh)2

]
K0

(
|l − 1/2|

√
(2πm)2 − (kh)2

)
.

(2.23)

Then

Σ7s(2kh, 0) =2πi(2kh)2
∞∑
l=1

H
(1)
0 [(2l − 1)kh]− 8

∞∑
m,l=1

[
(2πm)2 − (2kh)2

]
×K0

(
(2l − 1)

√
(πm)2 − (kh)2

)
. (2.24)

The sum
∑∞

l=1H
(1)
0 [(2l − 1)kh] can be efficiently evaluated using [17, Eqs. (A.15), (B.2), and

(B.3)].

Considering Σ6n(kh, d/h, 0) from (2.4i) and the derivation of [30, Eq. (9.74)] (see [30,

Eqs. (9.32) to (9.74)]) with m − 1/2 substituted for m, and (x, y) = (h/2, 0) substituted for

(x, y) = (0, 0),

Σ6n(kh, d/h, 0) =sgn(n)
[
2πi(kh)ei|n|kd + 2πi(kh)

×
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)m ×e−|n|(d/h)
√

(2π)2(m2+l2)−(kh)2
]
, n 6= 0;

=0, n = 0. (2.25)

From [30, Eq. (9.76)]

∞∑
n=−∞
n6=0
n even

einβdΣ6n(2kh, d/2h, 0) =4πkh
sin(2βd)

cos(2βd)− cos(2kd)
− 8πkh

∞∑
n=1

sin(2nβd)

×
∞∑

m,l=−∞
(m,l) 6=(0,0)

(−1)me−n(d/h)
√

(2π)2(m2+l2)−(2kh)2 .

(2.26)
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Similarly, replacing the factor (−1)m by (−1)l gives

∞∑
n=−∞
n6=0
n even

einβdΣ8n(2kh, d/2h, 0) =

∞∑
n=−∞
n6=0
n even

einβdΣ6n(2kh, d/2h, 0). (2.27)

For the summation for odd n,
∑∞

n=−∞ einβdΣ5n(2kh, d/2h, 0), n odd, is accounted for firstly.

According to (2.15) and using [17, Eq.(A.16)]

2πikh
∞∑

n=−∞
ei(n−1/2)βdei|n−1/2|kd =

8πkheikd cos(βd/2) sin(kd/2)

1− 2 cos(βd)eikd + e2ikd
, (2.28)

then summing over odd n by doubling d leads to

∞∑
n=−∞
n odd

einβdΣ5n(2kh, d/2h, 0) =
16πkhe2ikd cos(βd) sin(kd)

1− 2 cos(2βd)e2ikd + e4ikd
− 4π

∞∑
n=1

cos(2n− 1)βd

×
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)m
[
(2πl)2 − (2kh)2

]

× e−(2n−1)(d/2h)
√

(2π)2(m2+l2)−(2kh)2√
(2π)2(m2 + l2)− (2kh)2

. (2.29)

Similarly, replacing the factor (−1)m by (−1)l gives

∞∑
n=−∞
n odd

einβdΣ7n(2kh, d/2h, 0) =
16πkhe2ikd cos(βd) sin(kd)

1− 2 cos(2βd)e2ikd + e4ikd
− 4π

∞∑
n=1

cos(2n− 1)βd

×
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)l
[
(2πl)2 − (2kh)2

]

× e−(2n−1)(d/2h)
√

(2π)2(m2+l2)−(2kh)2√
(2π)2(m2 + l2)− (2kh)2

. (2.30)

For
∑∞

n=−∞ einβdΣ6n(2kh, d/2h, 0), n odd, beginning with (2.25) and using [17, Eq.(A.18)]

2πikh
∞∑

n=−∞
sgn(n− 1/2)ei(n−1/2)βdei|n−1/2|kd = −8πkheikd sin(βd/2) cos(kd/2)

1− 2 cos(βd)eikd + e2ikd
,

(2.31)
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then summing over odd n by doubling d leads to

∞∑
n=−∞
n odd

einβdΣ6n(2kh, d/2h, 0) =− 16πkhe2ikd sin(βd) cos(kd)

1− 2 cos(2βd)e2ikd + e4ikd
− 8πkh

∞∑
n=1

sin(2n− 1)βd

×
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)me−(2n−1)(d/2h)
√

(2π)2(m2+l2)−(2kh)2 .

(2.32)

Similarly, replacing the factor (−1)m by (−1)l gives

∞∑
n=−∞
n odd

einβdΣ8n(2kh, d/2h, 0) =
∞∑

n=−∞
n odd

einβdΣ6n(2kh, d/2h, 0). (2.33)

2.7 Appendix B

Derivation of double summation form of the rapidly converging expressions

To further accelerate the calculation while improving the accuracy, double summation form

of the rapidly converging expressions for the infinite summations of (2.4a), (2.4c), (2.4d), (2.4f),

(2.4g), (2.4i), (2.4j), and (2.4l) with respect to n for n even (n 6= 0), and for n odd in (2.10)

are obtained by performing the summation over n from 1 to ∞ in closed form using [30, Eq.

(D.4)]
∞∑
n=1

zn =
z

1− z
, z = ei(kd±βd). (2.34)

This leads to

∞∑
n=−∞
n 6=0
n even

einβdΣ1n(2kh, d/2h, 0) =− 4πikh− 4πkh
sin(2kd)

cos(2βd)− cos(2kd)

− 4π

∞∑
m,l=−∞

(m,l)6=(0,0)

(2πm)2 − (2kh)2

r

× cos(2βd)e−rd/h − e−2rd/h

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.35)
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∞∑
n=−∞
n6=0
n even

einβdΣ2n(2kh, d/2h, 0) =4πkh
sin(2βd)

cos(2βd)− cos(2kd)

− 8πkh

∞∑
m,l=−∞

(m,l) 6=(0,0)

sin(2βd)e−rd/h

1− 2 cos(2βd)e−rd/h + e−2rd/h
,

(2.36)

∞∑
n=−∞
n6=0
n even

einβdΣ3n(2kh, d/2h, 0) =− 4πikh− 4πkh
sin(2kd)

cos(2βd)− cos(2kd)

− 4π
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)m+l (2πm)2 − (2kh)2

r

× cos(2βd)e−rd/h − e−2rd/h

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.37)

∞∑
n=−∞
n6=0
n even

einβdΣ4n(2kh, d/2h, 0) =4πkh
sin(2βd)

cos(2βd)− cos(2kd)

− 8πkh
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)m+l sin(2βd)e−rd/h

1− 2 cos(2βd)e−rd/h + e−2rd/h
,

(2.38)

∞∑
n=−∞
n6=0
n even

einβdΣ5n(2kh, d/2h, 0) =− 4πikh− 4πkh
sin(2kd)

cos(2βd)− cos(2kd)

− 4π

∞∑
m,l=−∞

(m,l)6=(0,0)

(−1)m
(2πl)2 − (2kh)2

r

× cos(2βd)e−rd/h − e−2rd/h

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.39)
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∞∑
n=−∞
n6=0
n even

einβdΣ6n(2kh, d/2h, 0) =4πkh
sin(2βd)

cos(2βd)− cos(2kd)

− 8πkh

∞∑
m,l=−∞

(m,l)6=(0,0)

(−1)m
sin(2βd)e−rd/h

1− 2 cos(2βd)e−rd/h + e−2rd/h
,

(2.40)

∞∑
n=−∞
n 6=0
n even

einβdΣ7n(2kh, d/2h, 0) =− 4πikh− 4πkh
sin(2kd)

cos(2βd)− cos(2kd)

− 4π

∞∑
m,l=−∞

(m,l)6=(0,0)

(−1)l
(2πl)2 − (2kh)2

r

× cos(2βd)e−rd/h − e−2rd/h

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.41)

∞∑
n=−∞
n odd

einβdΣ1n(2kh, d/2h, 0) =
16πkhe2ikd cos(βd) sin(kd)

1− 2 cos(2βd)e2ikd + e4ikd

− 8πe−iβd
∞∑

m,l=−∞
(m,l)6=(0,0)

erd/2h

r

[
(πm)2 − (kh)2

]

× (1 + e2iβd)(e−rd/h − e−2rd/h)

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.42)

∞∑
n=−∞
n odd

einβdΣ2n(2kh, d/2h, 0) =− 16πkhe2ikd sin(βd) cos(kd)

1− 2 cos(2βd)e2ikd + e4ikd

+ 4iπkhe−iβd
∞∑

m,l=−∞
(m,l)6=(0,0)

erd/2h
(e2iβd − 1)(e−rd/h + e−2rd/h)

1− 2 cos(2βd)e−rd/h + e−2rd/h
,

(2.43)

∞∑
n=−∞
n odd

einβdΣ3n(2kh, d/2h, 0) =
16πkhe2ikd cos(βd) sin(kd)

1− 2 cos(2βd)e2ikd + e4ikd

− 8πe−iβd
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)m+l e
rd/2h

r

[
(πm)2 − (kh)2

]

× (1 + e2iβd)(e−rd/h − e−2rd/h)

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.44)
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∞∑
n=−∞
n odd

einβdΣ4n(2kh, d/2h, 0) =− 16πkhe2ikd sin(βd) cos(kd)

1− 2 cos(2βd)e2ikd + e4ikd

+ 4iπkhe−iβd
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)m+lerd/2h

× (e2iβd − 1)(e−rd/h + e−2rd/h)

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.45)

∞∑
n=−∞
n odd

einβdΣ5n(2kh, d/2h, 0) =
16πkhe2ikd cos(βd) sin(kd)

1− 2 cos(2βd)e2ikd + e4ikd

− 8πe−iβd
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)m
erd/2h

r

[
(πl)2 − (kh)2

]

× (1 + e2iβd)(e−rd/h − e−2rd/h)

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.46)

∞∑
n=−∞
n odd

einβdΣ6n(2kh, d/2h, 0) =− 16πkhe2ikd sin(βd) cos(kd)

1− 2 cos(2βd)e2ikd + e4ikd

+ 4iπkhe−iβd
∞∑

m,l=−∞
(m,l) 6=(0,0)

(−1)merd/2h

× (e2iβd − 1)(e−rd/h + e−2rd/h)

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.47)

∞∑
n=−∞
n odd

einβdΣ7n(2kh, d/2h, 0) =
16πkhe2ikd cos(βd) sin(kd)

1− 2 cos(2βd)e2ikd + e4ikd

− 8πe−iβd
∞∑

m,l=−∞
(m,l)6=(0,0)

(−1)l
erd/2h

r

[
(πl)2 − (kh)2

]

× (1 + e2iβd)(e−rd/h − e−2rd/h)

1− 2 cos(2βd)e−rd/h + e−2rd/h
, (2.48)

where r = 2
√
π2(m2 + l2)− (kh)2. According to (2.27) and (2.33),

∑∞
n=−∞ einβdΣ8n(2kh, d/2h, 0),

n 6= 0, n even, as well as
∑∞

n=−∞ einβdΣ8n(2kh, d/2h, 0), n odd, are equal to (2.40) and (2.47),

respectively.
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(a) Arrangement (a).

(b) Arrangement (b).

(c) Arrangement (c).
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(d) Arrangement (d).

(e) Arrangement (e).

(f) Arrangement (f).
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(g) Arrangement (g).

Figure 2.3 Comparisons of k−β diagrams for a 3D periodic array with arrangements (a) to (g),
Fig. 2.1, obtained by presented formulas in Tables 2.1 to 2.4 with these calculated
by MPB [35] and [17, Eq. (2.10)] (for arrangement (g) only). The 20, 30, and 60
lowest bands of arrangements (a) to (c), (d) to (f), and (g), respectively, computed
by MPB are shown. In these calculations, εr1 = εr2 = 400, a2/a1 = 1.4291, and
(a1 + a2)/(2d) = 0.2271.

Table 2.5 Backward wave and DNG regions and parameters of different arrangements of two
sets of dielectric spheres with equal permittivity but different radius

Arrangement* (kd)u (kd)l1 (kd)l2 BW1% BW2%

a 0.6233 0.6218 0.6227 0.241 0.096

b** - - - - -

c 0.6244 0.6006 0.6236 3.886 0.128

d 0.6207 0.6185 0.6194 0.355 0.210

e 0.6251 0.6211 0.6250 0.642 0.016

f** - - - - -

g 0.6248 0.6231 0.6245 0.272 0.048

εr1 = εr2 = 214.28, a2/a1 = 1.4294, a2/d = 0.49

*See Fig. 2.1.

**The root finding procedure shows no backward wave in this case.
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Table 2.6 Backward wave and DNG regions and parameters of different arrangements of two
sets of dielectric spheres with equal radius but different permittivity

Arrangement* (kd)u (kd)l1 (kd)l2 BW1% BW2%

a 0.4353 0.4350 0.4352 0.069 0.023

b** - - - - -

c 0.4362 0.3930 0.4359 10.420 0.069

d** - - - - -

e 0.4366 0.4349 0.4365 0.390 0.023

f** - - - - -

g 0.4364 0.4351 0.4363 0.298 0.023

εr1 = 214.28, εr2 = 440.20, a1 = a2 = a, a/d = 0.49

*See Fig. 2.1.

**The root finding procedure shows no backward wave in these case.

Table 2.7 Backward wave and DNG regions and parameters of different arrangements of mag-
netic and dielectric spheres

Arrangement* (kd)u (kd)l1 (kd)l2 BW1% BW2%

a** - - - - -

b 0.5029 0.4163 0.4670 18.842 7.403

c 0.4484 0.3817 0.4311 16.070 3.934

d*** - - - - -

e 0.4810 0.4120 0.4540 15.454 5.775

f 0.5030 0.4165 0.4678 18.815 7.252

g 0.4610 0.4141 0.4447 10.719 3.599

εr1 = µr2 = 214.28, εr2 = µr1 = 1, a1 = a2 = a, a/d = 0.49

*See Fig. 2.1.

**The root finding procedure shows no backward wave in this case.

***For this case, the effective constitutive parameters derived from the solution to the k − β
equation is not reasonable.



www.manaraa.com

52

2.9 References

[1] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index

of refraction,” Science, vol. 292, no. 5514, pp. 77-79, 2001.

[2] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency

plasmons in metallic mesostructures,” Phys. Rev. Lett., vol. 76, no. 25, pp. 4773-4776,

Jun. 1996.

[3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors

and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11,

pp. 2075-2084, Nov. 1999.

[4] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations.

New York: Wiley, 2006.

[5] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, no. 18,

pp. 3966-3969, 2000.

[6] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science,

vol. 312, no. 5781, pp. 1780-1782, 2006.

[7] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R.

Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314,

no. 5801, pp. 977-980, Nov. 2006.



www.manaraa.com

53

[8] J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of

dielectrics,” Nature Mater., vol. 8, no. 7, pp. 568-571, Jul. 2009.

[9] R. W. Ziolkowski and A. Erentok, “Metamaterial-based efficient electrically small anten-

nas,” IEEE Trans. Antennas Propag., vol. 54, no. 7, pp. 2113-2130, Jul. 2006.

[10] W. W. Shu and J. M. Song, “Sommerfeld integral path for layered double negative meta-

materials,” IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1496–1504, Mar. 2012.

[11] J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials

using simple short wire pairs,” Phys. Rev. B, vol. 73, no. 4, pp. 041101-1–041101-4, Jan.

2006.

[12] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-

index metamaterial at telecommunication wavelengths,” Opt. Lett., vol. 31, no. 12, pp.

1800-1802, 2006.

[13] C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A doubly negative (D-

NG) composite medium composed of magneto-dielectric spherical particles embedded in a

matrix,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2596-2603, Oct. 2003.

[14] I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative

permittivity and permeability,” Microw. Opt. Technol. Lett., vol. 48, no. 12, pp. 2553-2556,

Dec. 2006.

[15] I. Vendik, O. Vendik, J. Kolmakov, and M. Odit, “Modelling of isotropic double negative

media for microwave applications,” Opto-Electron. Rev., vol. 14, no. 3, pp. 179-186, 2006.
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[38] A. Alù, private communication.

[39] S. Johnson, private communication.

[40] C. R. Simovski, “On electromagnetic characterization and homogenization of nanostruc-

tured metamaterials,” J. Opt., vol. 13, no. 1, p. 013001, Jan. 2011.

[41] D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry,

“Limitations on subdiffraction imaging with a negative refractive index slab,” App. Phys.

Lett., vol. 82, no. 10, pp. 1506-1508, Mar. 2003.

[42] J. Liu and N. Bowler, “Analysis of losses in a double-negative (DNG) metamaterial com-

posed of magnetodielectric spheres embedded in a matrix,” Microw. Opt. Technol. Lett.,

vol. 53, no. 7, pp. 1649-1652, 2011.

[43] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products; 6th Edition.

Boston, MA: Academic Press, 1994.



www.manaraa.com

57

CHAPTER 3. RATIONAL DESIGN OF DOUBLE-NEGATIVE

METAMATERIALS CONSISTING OF 3D ARRAYS OF TWO

DIFFERENT NON-METALLIC SPHERES ARRANGED ON A SIMPLE

TETRAGONAL LATTICE

A paper published in 2011 IEEE International Symposium on Antennas and Propagation

(APSURSI)

Yang Li, Nicola Bowler

3.1 Abstract

Non-metallic, low-loss double-negative (DNG) metamaterials can be formed by three-dimensional

(3D) arrays of two different non-metallic spheres arranged on a simple tetragonal lattice. Such

DNG metamaterials have recently been found to provide DNG bandwidths of 10% through 3D

arrays of two different dielectric spheres, and of 18% through 3D arrays of dielectric and mag-

netic spheres. However, a method of rational design of these DNG metamaterials has not yet

been presented. This paper develops a design procedure based on the theoretical description

of traveling waves supported by the 3D arrays. Analytical calculations of k − β (dispersion)

diagram and effective constitutive parameters of several DNG metamaterials designed using

this rule are presented.

3.2 Introduction

During the last decade, significant progress has been achieved both in the theoretical devel-

opment and practical application of metamaterials [1]. Present realizations of metamaterials

often employ sub-wavelength resonant metallic elements, such as metallic split ring resonators
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Table 3.1 Three combinations of sphere types

Combination Electrical parameters Radius

I εr1 = εr2, µr1 = µr2 = 1 a1 6= a2

II εr1 6= εr2, µr1 = µr2 = 1 a1 = a2

III εr1 = µr2, µr1 = εr2 = 1 a1 = a2

Figure 3.1 Two sets of spheres and unit cell geometry.

combined with wires [2]. The drawbacks of metal-based metamaterials include conduction loss,

anisotropy, and fabrication challenge in the infrared and optical frequency range.

In a contrasting approach, Holloway et al. [3] demonstrated, theoretically, that a DNG

metamaterial can be formed by a 3D array of non-conductive, magnetodielectric spheres with

values of relative permittivity and permeability much greater than one and close to each other.

However, the practicality of fabricating DNG metamaterials by this approach is questionable,

at least at present, because such magnetodielectric materials are currently not available above

1 GHz [4]. Alternatively, several authors proposed using 3D arrays of two different non-metallic

spheres to form DNG metamaterials [4]-[6]. The two sets of spheres can have three different

combinations, Table 3.1.

Several theoretical and experimental works have been conducted for this type of DNG

metamaterials, e.g. [7]-[9], but none of these works provide a rational design method that

permits a priori design of a non-metallic DNG metamaterial with prescribed characteristics.

This paper presents a clear design procedure for DNG metamaterials consisting of 3D arrays of

two different non-metallic spheres arranged on a simple tetragonal lattice. This procedure can

give an easy-to-fabricate design with wide DNG bandwidth and desired effective constitutive
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parameters at the operating frequency. A brief introduction of the theoretical scheme applied

in this design procedure is provided in Section 3.3. Section 3.4 outlines the design procedure,

which can yield the array parameters needed to achieve the prescribed bulk parameters. Two

examples are provided in Section 3.5 to illustrate the use of the design procedure for achieving

the prescribed characteristics.

3.3 Theory

Figure 3.2 Six different arrangements of four 1-spheres and four 2-spheres within the unit cell.

Two sets of non-metallic spheres are arbitrarily arranged on each lattice point of the unit

tetragon. One set of spheres with relative permittivity εr1, relative permeability µr1, and radius

a1 will be referred to as “1-spheres” while the other set with relative permittivity εr2, etc., will

be referred to as “2-spheres”. The z axis is chosen as the array axis in which the height, d,

of each unit cell lies, as shown in Fig. 3.1. The cross-section of each unit cell is normal to

the z axis with equal length and width, h, in the x and y directions, respectively. In the

planes z = 2nd, n = 0,±1,±2, · · · or z = (2n− 1) d, n = 0,±1,±2, · · · , either set of spheres

could be centered at [x = 2mh, y = 2lh], [x = (2m− 1)h, y = 2lh], [x = 2mh, y = (2l − 1)h],

or [x = (2m− 1)h, y = (2l − 1)h] , l,m = 0,±1,±2, · · · . Six different arrangements of four 1-

spheres and four 2-spheres on the vertices of the unit cell are shown in Fig. 3.2.

Each sphere is modeled by a pair of crossed electric and magnetic dipoles, which are oriented

in the x and y direction, respectively. It is assumed that the array is excited by a traveling wave

in the array axis direction, with real propagation constant β, and that all the spheres are excited

identically. In the presence of the excitation, the electric and magnetic fields that are incident

on the sphere at position (x, y, z) = (0, 0, 0) are obtained by summing the contributions from
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all the other spheres of the array. This traveling wave is characterized by the k−β (dispersion)

equation [9, Eq. (9)], which is obtained by a spherical-wave source scattering-matrix approach.

The k−β equation relates the propagation constant, β, of the traveling wave, to the free-space

wavenumber, k. For a given kd and an array of lossless scatters, the k−β equation can be solved

for real βd by a search procedure [9]. For a 3D array whose sphere elements are sufficiently

close to each other, kd, βd < 0.5, the array can be treated macroscopically as a homogeneous

medium with effective permittivity εeff
r and permeability µeff

r , which can be obtained based on

the solution to the k − β equation.

3.4 Design procedure

The goal of the procedure is to achieve, by rational design, a wide DNG bandwidth around

a selected operating frequency, f , constrained by the conditions kd, βd < 0.5. Design steps are

as follows.

1) Specify operating frequency f of the desired DNG metamaterial.

2) Based on the particular application and achievable fabrication tolerance of the geometric

and electrical parameters of the spheres, select a combination of sphere types from those given

in Table 3.1.

3) For the selected combination of sphere types, choose an arrangement from the six different

ones, Fig. 3.2, based on the results in Table 3.2 [9] to achieve a wider DNG bandwidth. Here, the

fractional bandwidth of the DNG region is defined as the width of the DNG kd interval divided

by the average value of kd in that interval. BW1 and BW2 are the fractional bandwidths for

the entire DNG region and for the portion of the DNG region where βd ≤ 0.5, respectively.

4) Assuming a2 ≥ a1 and considering the chosen spheres arrangement, select proper a2/d

and d/h to achieve a large volume fraction vf since a larger vf will increase the coupling between

the electric and magnetic dipoles of the spheres so as to give a wider DNG bandwidth [8].

5) Considering that decreasing kd improves the homogenization approximation of the array,

but at the expense of decreasing the DNG bandwidth, select a proper kd in the range kd < 0.5.

Calculate ka2 based on the selected a2/d.

6) This step is different for spheres combinations I and II or III. For spheres combination I,
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Table 3.2 The widest DNG bandwidths provided by different arrangements of spheres,
Fig. 3.2, for each spheres combination

Combination* Widest BW1** Widest BW2**

I (c) (d)

II (c) (c)

III (b) (b)

*See Table 3.1.

**Arrangement of spheres, Fig. 3.2.

adjust εr1 until the first electric dipole resonance is located at the ka2 calculated in step 5. In

addition, set ka1 equal to the value of ka corresponding to the first magnetic dipole resonance.

Compute a1/d through (a2/d)/(ka2/ka1). Note that ka1 and ka2 require high accuracy to

correspond with, respectively, the first magnetic and electric resonances well. For spheres

combinations II or III, select εri and µri (i = 1, 2) properly to make the first magnetic dipole

resonance of 1-spheres and the first electric dipole resonance of 2-spheres coincide with each

other at the ka2 calculated in step 5. Similarly, εri and µri (i = 1, 2) require high accuracy to

achieve a good coincidence between the first magnetic and electric resonances. In this step, the

magnetic and electric Mie dipole scattering coefficients, asc
1 (ka) and bsc1 (ka), for the i-spheres

(i = 1, 2) are calculated by [10, Sec. 9.25, Eqs. (10), (11)], which are shown in (3.1). Here,

mi =
√
εriµri, i = 1, 2.

asc
1 (ka) = − µrij1(mika) [(ka)j1(ka)] ′ − j1(ka) [(mika)j1(mika)] ′

µrij1(mika)
[
(ka)h

(1)
1 (ka)

]
′ − h(1)

1 (ka) [(mika)j1(mika)] ′
, (3.1a)

bsc1 (ka) = − µrij1(ka) [(mika)j1(mika)] ′ −m2
i j1(mika) [(ka)j1(ka)] ′

µrih
(1)
1 (ka) [(mika)j1(mika)] ′ −m2

i j1(mika)
[
(ka)h

(1)
1 (ka)

]
′
. (3.1b)

7) Obtain the k − β (dispersion) diagram with selected parameters by solving the k − β

equation [9, Eq. (9)] and obtain εeff
r and µeff

r based on the solution to the k − β equation [4,

Eq. (2.36)]. Then, select a proper value of kd based on the particular application in the DNG

region and calculate the corresponding d based on f . Finally, compute a1, a2, and h according
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to the value of d and selected a1/d, a2/d, and d/h.

3.5 Examples

This section provides two metamaterial designs to illustrate the capabilities of the procedure

outlined in Section 3.4.

3.5.1 εeff
r = −1 metamaterial superlens

Figure 3.3 Magnetic and electric Mie dipole scattering coefficients for a sphere with (a)
εr = 523.5 and µr = 1, (b) εr = 254.98 and µr = 1 and (c) εr = 1 and µr = 254.98.

This first example is intended to achieve a superlens for transverse magnetic (TM) mode of

electromagnetic wave with εeff
r = −1 within the X-band (8-12 GHz). 1) 10 GHz is specified as

f . 2) The spheres combination I is selected due to its advantage over spheres combination III:
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Table 3.3 Geometric and electrical parameters of examples discussed in Sections 3.5.1 and
3.5.2

Example εr1 εr2 µr1 µr2 a1 a2 d h

(mm) (mm) (mm) (mm)

1 523.5 523.5 1 1 0.649 0.936 1.910 1.910

2 254.98 1 1 254.98 1.006 1.006 2.053 2.053

the availability of purely dielectric materials with large relative permittivity is better than that

of purely magnetic materials with large relative permeability, and its advantage over spheres

combination II: the achievable fabrication toleration of spheres radius is tighter than that of

spheres permittivity. 3) Arrangement (c) is chosen since it provides the widest BW1 for spheres

combination I, Table 3.2. 4) a2/d = 0.49 and d/h = 1 are chosen to give a large vf = 0.3287.

5) To yield a wide DNG bandwidth in the range kd < 0.5 and considering the electrostatic

limit d� λ of the εeff
r = −1 metamaterial superlens [11], kd = 0.4 (d = 0.064λ) is selected and

ka2 = 0.196 is obtained. 6) Selecting εr1 = 523.5, the first electric dipole resonance is located

at ka2 = 0.196, Fig. 3.3 (a). Next, ka1 is set equal to 0.137 to coincide with the first magnetic

resonance as shown in Fig. 3.3 (a). Then, a1/d = 0.34 is obtained. 7) The k − β diagram, εeff
r

and µeff
r are calculated and shown in Fig. 3.4. Then, kd = 0.4, corresponding to εeff

r = −1, is

selected so as to yield the geometric and electrical parameters given in Table 3.3.

3.5.2 DNG superlens

The second example provides guidance for designing a DNG superlens with εeff
r = µeff

r = −1

[11] within the X-band (8-12 GHz). 1) As for example 1, 10 GHz is specified as f . 2) To achieve

εeff
r = µeff

r at all frequencies, the spheres combination III is selected. 3) Arrangement (b) is

chosen since it yields the widest BW1 and BW2 for spheres combination III, Table 3.2. Then,

as for example 1, a/d = 0.49 (a1 = a2 = a), d/h = 1, kd = 0.4, and ka = 0.196 are selected

in steps 4 and 5 to give a wide DNG bandwidth. 6) εr1 = µr2 = 254.98 and εr2 = µr1 = 1 are

selected and the first magnetic dipole resonance of 1-spheres and first electric dipole resonance

of 2-spheres coincide with each other at ka = 0.196, Figs. 3.3 (b) and (c). 7) The k − β

diagram, εeff
r and µeff

r are computed and shown in Fig. 3.5. Then, kd = 0.43, corresponding to
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Figure 3.4 (a) k−β diagram and (b) effective relative permittivity and permeability of example
1, Section 3.5.1.

εeff
r = µeff

r = −1, is selected so as to yield the geometric and electrical parameters in Table 3.3.

3.6 Conclusion

This paper presents a design procedure for the DNG metamaterials composed of 3D arrays of

two different non-metallic spheres arranged on a simple tetragonal lattice. Future developments

of the present design procedure include the following aspects. First, since in practice it may be

easier to fabricate the array elements as cubes or cylinders than spheres [7], a design procedure

for metamaterials composed of 3D arrays of two sets of cubes or cylinders might be outlined.

Second, considering that DNG behavior is extinguished if the constituents exhibit losses above

a certain threshold value [3], losses can be considered in the presented design procedure.

3.7 Acknowledgment
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Figure 3.5 (a) k−β diagram and (b) effective relative permittivity and permeability of example
2, Section 3.5.2.
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CHAPTER 4. ANALYTICAL EXPRESSIONS FOR MIE DERIVATIVES

A paper to be submitted to Applied Optics

Yang Li, Nicola Bowler

4.1 Abstract

Analytical expressions are obtained for the derivatives of Mie scattering coefficients with

respect to the size of the spherical scattering particle, and to the relative permittivity and

permeability of both the particle and the surrounding medium. These expressions have been

verified by comparing their results with those calculated by analytical expressions developed

by Mathematica.

4.2 Introduction

Recently, the first all-dielectric metamaterial with magnetic activity was demonstrated at

optical frequencies [1]. It follows the general idea of achieving a non-metallic metamaterial

based on Mie resonances with electric and magnetic resonances of the inclusions providing

the negative effective permittivity and permeability, respectively, of the composite [2]. Design

of non-metallic metamaterials of this kind needs not only the Mie scattering coefficients but

also their derivatives with respect to the size of the spherical scattering particle, and to the

relative permittivity and permeability of both the particle and the surrounding medium, for the

purpose of analyzing the effect of parameter variations on the effective constitutive parameters

of the proposed metamaterials [3]. Previous work, however, gives derivatives only with respect

to particle size and complex refractive index [4]. In this letter, analytical expressions are

presented for derivatives with respect to the size of the spherical scattering particle, and to the
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relative permittivity and permeability of both the particle and the surrounding medium.

4.3 Theory

Based on the Mie theory, the light scattered from a sphere is represented as partial waves

radiated by multipoles located at the center of the sphere. The first partial wave is radiated by

a dipole, the second by a quadrupole, and so on. Magnitudes of these partial waves are given

by the Mie scattering coefficients an and bn. The magnitude of the nth electric partial wave is

an while that of the nth magnetic partial wave is bn [5]:

an = −µr1ψn(m1x)ψ′n(m2x)− µr2mψ
′
n(m1x)ψn(m2x)

µr1ψn(m1x)ξ′n(m2x)− µr2mψ′n(m1x)ξn(m2x)
, (4.1)

bn = −µr1ψ
′
n(m1x)ψn(m2x)− µr2mψn(m1x)ψ′n(m2x)

µr1ψ′n(m1x)ξn(m2x)− µr2mψn(m1x)ξ′n(m2x)
, (4.2)

where m1 =
√
εr1µr1 and m2 =

√
εr2µr2 are the real refractive indices of the sphere and medium,

respectively, in which εri and µri (i = 1, 2) are the real relative permittivity and permeability

of the sphere (i = 1) and medium (i = 2); m = m1/m2 is the refractive index of the sphere

relative to the medium; x = k0r = ω
√
ε0µ0 r is the electrical radius of the sphere, given that

ε0 and µ0 are the permittivity and permeability of the free space, r is the radius of the sphere;

and the prime denotes differentiation with respect to the argument of the function. Further,

ψn(z)≡zjn(z) and ξn(z)≡zh(1)
n (z), (4.3)

where ψn(z) and ξn(z) are Riccati-Bessel functions defined in terms of the spherical Bessel

function of the first kind, jn(z), and the spherical Hankel function of the first kind, h
(1)
n (z) [6,

Chap. 4].

The Mie scattering coefficients given in Eqs. (4.1) and (4.2) differ from the classical ones

given in [5, Sec. 9.25, Eqs. (10) and (11)] because the classical Mie scattering coefficients use

x = k2r = ω
√
ε2µ2 r instead of x = k0r = ω

√
ε0µ0 r. This small mathematical change from

x = k2r to x = k0r makes the relative permittivity (εr2) and relative permeability (µr2) of the

medium in which the sphere is embedded explicit. In this way, it becomes straightforward to

differentiate Eqs. (4.1) and (4.2) with respect to εr2 and µr2.
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To obtain the analytical expressions for the derivatives of an and bn, the following identities

are used [4], [7]:

ψ′n(z)ξn(z)− ψn(z)ξ′n(z) = −i, (4.4)

ψ′′n(z)ξn(z)− ψn(z)ξ′′n(z) = 0, (4.5)

ψ′′n(z)ξ′n(z)− ψ′n(z)ξ′′n(z) = −i
[
1− n(n+ 1)

z2

]
, (4.6)

where i is the imaginary unit
√
−1. Note that there should be an extra minus sign on the right

hand side of Eqs. (14) and (17) in [4], which have been remedied in Eqs. (4.4) and (4.6). Based

on these expressions, the Mie derivatives are obtained and shown in Eqs. (4.7)-(4.16).

∂an
∂x

=i

{
µr2(µr2 − µr1)

m2
1

m2

[
ψ′n(m1x)

]2
+ µr1µr2

m2
1

m2
ψn(m1x)ψ′′n(m1x)

+µ2
r1m2 [ψn(m1x)]2

[
1− n(n+ 1)

(m2x)2

]}
÷
[
µr1ψn(m1x)ξ′n(m2x)− µr2mψ

′
n(m1x)ξn(m2x)

]2
, (4.7)

∂bn
∂x

=i

{
µr1(µr1m2 − µr2

m2
1

m2
)
[
ψ′n(m1x)

]2
+ µr1µr2

m2
1

m2
ψn(m1x)ψ′′n(m1x)

+µ2
r2

m2
1

m2
[ψn(m1x)]2

[
1− n(n+ 1)

(m2x)2

]}
÷
[
µr1ψ

′
n(m1x)ξn(m2x)− µr2mψn(m1x)ξ′n(m2x)

]2
, (4.8)

∂an
∂εr1

=0.5i

{
µ2

r1

√
µr2

εr2
x
{
ψn(m1x)ψ′′n(m1x)−

[
ψ′n(m1x)

]2}
+µ1.5

r1

√
µr2

εr1εr2
ψn(m1x)ψ′n(m1x)

}
÷
[
µr1ψn(m1x)ξ′n(m2x)− µr2mψ

′
n(m1x)ξn(m2x)

]2
, (4.9)

∂bn
∂εr1

=0.5i

{
µ2

r1

√
µr2

εr2
x
{
ψn(m1x)ψ′′n(m1x)−

[
ψ′n(m1x)

]2}
−µ1.5

r1

√
µr2

εr1εr2
ψn(m1x)ψ′n(m1x)

}
÷
[
µr1ψ

′
n(m1x)ξn(m2x)− µr2mψn(m1x)ξ′n(m2x)

]2
, (4.10)
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∂an
∂µr1

=0.5i

{
εr1µr1

√
µr2

εr2
x
{
ψn(m1x)ψ′′n(m1x)−

[
ψ′n(m1x)

]2}
−
√
εr1µr1µr2

εr2
ψn(m1x)ψ′n(m1x)

}
÷
[
µr1ψn(m1x)ξ′n(m2x)− µr2mψ

′
n(m1x)ξn(m2x)

]2
, (4.11)

∂bn
∂µr1

=0.5i

{
εr1µr1

√
µr2

εr2
x
{
ψn(m1x)ψ′′n(m1x)−

[
ψ′n(m1x)

]2}
+

√
εr1µr1µr2

εr2
ψn(m1x)ψ′n(m1x)

}
÷
[
µr1ψ

′
n(m1x)ξn(m2x)− µr2mψn(m1x)ξ′n(m2x)

]2
, (4.12)

∂an
∂εr2

=0.5i

{
εr1µr1

(
µr2

εr2

)1.5

x
[
ψ′n(m1x)

]2
+ µ2

r1

√
µr2

εr2
x [ψn(m1x)]2

[
1− n(n+ 1)

(m2x)2

]

−√εr1µr2

(
µr1

εr2

)1.5

ψn(m1x)ψ′n(m1x)

}

÷
[
µr1ψn(m1x)ξ′n(m2x)− µr2mψ

′
n(m1x)ξn(m2x)

]2
, (4.13)

∂bn
∂εr2

=0.5i

{
µ2

r1

√
µr2

εr2
x
[
ψ′n(m1x)

]2
+ εr1µr1

(
µr2

εr2

)1.5

x [ψn(m1x)]2
[
1− n(n+ 1)

(m2x)2

]

+
√
εr1µr2

(
µr1

εr2

)1.5

ψn(m1x)ψ′n(m1x)

}

÷
[
µr1ψ

′
n(m1x)ξn(m2x)− µr2mψn(m1x)ξ′n(m2x)

]2
, (4.14)

∂an
∂µr2

=0.5i

{
εr1µr1

√
µr2

εr2
x
[
ψ′n(m1x)

]2
+ µ2

r1

√
εr2
µr2

x [ψn(m1x)]2
[
1− n(n+ 1)

(m2x)2

]
+µ1.5

r1

√
εr1

εr2µr2
ψn(m1x)ψ′n(m1x)

}
÷
[
µr1ψn(m1x)ξ′n(m2x)− µr2mψ

′
n(m1x)ξn(m2x)

]2
, (4.15)
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∂bn
∂µr2

=0.5i

{
µ2

r1

√
εr2
µr2

x
[
ψ′n(m1x)

]2
+ εr1µr1

√
µr2

εr2
x [ψn(m1x)]2

[
1− n(n+ 1)

(m2x)2

]
−µ1.5

r1

√
εr1

εr2µr2
ψn(m1x)ψ′n(m1x)

}
÷
[
µr1ψ

′
n(m1x)ξn(m2x)− µr2mψn(m1x)ξ′n(m2x)

]2
. (4.16)

In Eqs. (4.7)-(4.16), the Riccati-Bessel functions and their derivatives are evaluated as

follows. Because the Riccati-Bessel functions are solutions of the Riccati differential equation

[8],

z2w′′(z) +
[
z2 − n(n+ 1)

]
w(z) = 0, (4.17)

where n = 0, ±1, ±2..., the second order derivative of the Riccati-Bessel functions can be

expressed as [4, Eq. (38)]

ψ′′n(z) = ψn(z)

[
n(n+ 1)

z2
− 1

]
. (4.18)

Note that there should be an extra minus sign on the right hand side of Eq. (38) in [4], which

has been remedied in Eq. (4.18).

The first order derivative of Riccati-Bessel functions can be expressed by utilizing the re-

currence relation [9]

ψ′n(z) = ψn−1(z)− n

z
ψn(z). (4.19)

In addition, the recurrence relation for the Riccati-Bessel functions is

ψn(z) =
2n− 1

z
ψn−1(z)− ψn−2(z), (4.20)

where ψ−1(z) = cos z, ψ0(z) = sin z, ξ−1(z) = cos z+ i sin z, and ξ0(z) = sin z− i cos z [4]. Note

that Eqs. (4.18)-(4.20) also hold for ξn(z).

4.4 Verification

To test the analytical expressions for the derivatives of an and bn, Eqs. (4.7)-(4.16), at least

for n = 1, the derivatives of Mie dipole scattering coefficients (a1 and b1) with parameters for a
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DNG metamaterial presented in [10]: εr1 = 40, µr1 = 200, εr2 = 1, and µr2 = 1, are obtained by

Eqs. (4.7)-(4.16) with Eqs. (4.18)-(4.20) and compared with those calculated by the analytical

expressions for the derivatives developed by Mathematica. Excellent agreement is achieved, as

shown in Fig. 4.1. Using Mathematica, the analytical expressions for the derivatives of Mie

dipole scattering coefficients are obtained by differentiating Eqs. (4.1) and (4.2), with Eqs.

(4.18)-(4.20) substituted, with respect to x, εr1, µr1, εr2, and µr2. Note that the expressions

developed by Mathematica are much more cumbersome than the presented ones. Eqs. (4.7)-

(4.16) have also been tested for n = 6 and excellent agreement is achieved in this case as well,

as shown in Fig. 4.2.

4.5 Conclusion

This letter presented and tested analytical expressions for the derivatives of Mie scattering

coefficients with respect to the size of the spherical scattering particle, and to the relative

permittivity and permeability of both the particle and the surrounding medium.
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Figure 4.1 Comparisons of magnitudes of derivatives of a1 and b1 with respect to x [(a)-(b)], εr1
[(c)-(d)], µr1 [(e)-(f)], εr2 [(g)-(h)], and µr2 [(i)-(j)], obtained by presented formulas
Eqs. (4.7)-(4.16), and (4.18)-(4.20), with these calculated by expressions developed
by Mathematica.
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Figure 4.2 Comparisons of magnitudes of derivatives of a6 and b6 with respect to x [(a)-(b)], εr1
[(c)-(d)], µr1 [(e)-(f)], εr2 [(g)-(h)], and µr2 [(i)-(j)], obtained by presented formulas
Eqs. (4.7)-(4.16), and (4.18)-(4.20), with these calculated by expressions developed
by Mathematica.
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CHAPTER 5. EFFECTS OF PARAMETER VARIATIONS ON

NEGATIVE EFFECTIVE CONSTITUTIVE PARAMETERS OF

NON-METALLIC METAMATERIALS

A paper submitted to Journal of Applied Physics

Yang Li, Nicola Bowler

5.1 Abstract

Analytical expressions describing the variability of effective constitutive parameters of non-

metallic metamaterials, as a function of the constituent geometric and material parameters and

their variations, have been developed from the total differential of Clausius-Mossotti expres-

sions for the effective (bulk) constitutive parameters of the metamaterial. In practice, these

expressions are important for estimating the performance of a metamaterial with particular

variations in the parameters of its constituents that arise during the fabrication process, and

can be used to guard against extinction of desired double negative (DNG) behavior. With

the derived expressions, the effects of parameter variations on effective constitutive parameters

of non-metallic metamaterials have been analyzed for three types of metamaterials: i) cubic

arrays of identical magnetodielectric spheres; ii) cubic arrays of dielectric spheres with equal

radius but two different permittivities; and iii) cubic arrays of dielectric spheres with equal

permittivity but two different radii. These effects are evaluated in terms of the calculated vari-

ations in values of the effective constitutive parameters of the metamaterial in the vicinity of

the DNG or single negative (SNG) band for particular geometric and material parameters and

their variations. Results show that variation in the following parameters impacts DNG band-

width. Listed in order from greatest to least influence: i) sphere radius; ii) sphere permittivity
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and permeability; iii) lattice constant of the array and iv) the constitutive parameters of the

array medium, all impact the width of the achievable DNG band. For particular cases studied

here, results also show that the DNG behavior may be extinguished if there are 0.78%, 0.016%,

and 0.016% variations in all parameters of metamaterial types i), ii), and iii), respectively, as

defined above. For the design of non-metallic metamaterials with inclusions, having arbitrary

shapes and material parameters, in either periodic or random arrangement, the presented re-

sults can give a qualitative guide on the level of fabrication tolerances that should be achieved

in order to observe the predicted SNG or DNG behavior experimentally.

5.2 Introduction

Metamaterials are artificial composite materials, consisting of sub-wavelength building

blocks, which can show anomalous and exotic electromagnetic responses.[1], [2] When the lattice

constant is much smaller than the operating wavelength, the composite can be treated macro-

scopically as a homogeneous medium with effective relative permittivity and permeability, εeff
r

and µeff
r . As the first metamaterials implemented experimentally, metal-based metamaterials

have achieved rapid development from microwave to visible frequencies in the last decade.[1], [2]

To avoid the drawbacks of metal-based metamaterials, such as conduction loss and anisotropy,

composites consisting of non-metallic scatterers embedded in a low permittivity matrix have

been proposed to achieve metamaterials.[3]-[6] This scheme usually achieves negative effective

permittivity at the resonance(s) of the Mie electric dipole scattering coefficient, negative effec-

tive permeability at the resonance(s) of the Mie magnetic dipole scattering coefficient, and DNG

behavior by overlapping resonances of Mie electric and magnetic dipole scattering coefficients.

[5], [7]-[18] In theory, metamaterials are designed with geometric and electric parameters of the

building blocks identical to ideal values. In practice, however, these parameters exhibit varia-

tions due to non-ideal, achievable fabrication tolerances, which may extinguish DNG behavior.

The purpose of this paper is to present an analytical approach to assessing the effects of those

parameter variations on DNG behavior of non-metallic metamaterials.

For metal-based metamaterials, the effect of variation in spacing between the electric ring

resonator and the cut wire on the absorbance of an absorbing metamaterial was analyzed using



www.manaraa.com

80

a statistics-based method in Ref. [19]. The effects of variations of the geometrical parameters

and changes in the background on the invisibility properties of the metamaterial cloak were

investigated in Ref. [20]. The resonant behaviors of metamaterials with elements disordered

from their initially periodic arrangement were studied in Refs. [21], [22]. As for non-metallic

metamaterials, the influence of size and permittivity distributions of spherical particles on

the DNG characteristics of metamaterial was analyzed in Refs. [23], [24]. Further, the effects

of scatterer size variations on the reflection and transmission properties of a metafilm were

investigated in Ref. [25]. None of these works, however, give explicit analytical expressions

for the variability of effective constitutive parameters of the metamaterial as a function of the

constituent geometric and material parameters and their variations.

This paper develops the Clausius-Mossotti relations for effective constitutive parameters of

two types of non-metallic metamaterials: a cubic array of identical magnetodielectric spheres

and a cubic array of two different magnetodielectric spheres. Explicit analytical expressions

for the variability of effective constitutive parameters as a function of the geometric and ma-

terial parameters of the spheres, the matrix and their variations are developed from the total

differential of the Clausius-Mossotti relations. According to these expressions, the effects of

parameter variations on the effective constitutive parameters are analyzed for three types of

non-metallic metamaterials: i) cubic arrays of identical magnetodielectric spheres; ii) cubic ar-

rays of dielectric spheres with equal radius but two different permittivities; and iii) cubic arrays

of dielectric spheres with equal permittivity but two different radii. Here, the term “magne-

todielectric” refers to spheres with relative permittivity and permeability both greater than

one, or purely dielectric/magnetic spheres.[13], [26] (Ref. [13] contains a considerable number

of mostly typographical mistakes which have been corrected in Ref. [27].)

The paper is arranged as follows. Sec. 5.3 gives the expressions for variability of effective

constitutive parameters of non-metallic metamaterials. The presented expressions are tested in

Sec. 5.4 for particular cases. Comparisons of the effects of different parameters and of different

combinations of parameter variations are presented in Sec. 5.5.
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5.3 Theory

5.3.1 Cubic arrays of identical magnetodielectric spheres

Magnetodielectric spheres with relative permittivity εr1, relative permeability µr1, and ra-

dius a are arranged on a cubic lattice with lattice constant d, Fig. 5.1. The matrix medium

Figure 5.1 An array of identical spheres and unit cell geometry.

has relative permittivity εr3 and relative permeability µr3 (the subscript ‘3’ is chosen so that

‘2’ is reserved for a second type of sphere mentioned later, see Fig. 5.2 in Sec. 5.3.2). When

the lattice constant is much smaller than the operating wavelength, kd ≤ 1,[11] the array can

be treated macroscopically as a homogeneous medium with effective relative permittivity εeff
r

and effective relative permeability µeff
r . εeff

r can be expressed in the form of Clausius-Mossotti

formula (Eq. (3.24) in Ref. [28])

εeff
r − εr3

εeff
r + 2εr3

=
nα

3εr3ε0
(5.1)

where εr3 is the relative permittivity of the matrix medium, n is the number density of the

dipoles, α is the polarisability of each inclusion (sphere), and ε0 is the vacuum permittivity.

Multiply E0, which is the local, uniform, electric field exciting a single sphere, on both sides of

Eq. (5.1). Then, replacing the vector quantities by their corresponding scalar ones gives

εeff
r − εr3

εeff
r + 2εr3

E0 =
np

3εr3ε0
(5.2)
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where p is the moment of each electric dipole. Solving Eq. (5.2) for εeff
r gives

εeff
r = εr3

2Bj + 3

3−Bj
(5.3)

with

B1 =
np

εr3ε0E0
, (5.4)

where j = 1, 2 depending on the number of types of magnetodielectric spheres composing the

array.

Eq. (5.4) can be expressed as [11]

B1 = − 6πibsc1
(k0d)3(εr3µr3)1.5

, (5.5)

where bsc1 is the Mie electric dipole scattering coefficient given by Eq. (4.2), k0d = ω
√
ε0µ0 d is

the electrical lattice constant. Note that, in contrast with Eq. (76) in Ref. [11], εeff
r in Eq. (5.3)

is relative to the vacuum permittivity ε0 instead of the matrix medium permittivity ε3. Also

note that kd in Eq. (5.5) is expressed as k0
√
εr3µr3 d in order to make εr3 and µr3 explicit in

Eq. (5.3). By doing so, it becomes easier to study the effects of the variations of εr3 and µr3 on

εeff
r and µeff

r .

Expressions for the effective relative permeability µeff
r can be obtained by replacing εr3 and

bsc1 in Eqs. (5.3) and (5.5), respectively, by µr3 and asc
1 . asc

1 is the Mie magnetic dipole scattering

coefficient given by Eq. (4.1).

When a metamaterial of the type shown in Fig. 5.1 is fabricated, departure of εeff
r and µeff

r

from their designed values may arise due to variation in any of the following parameters: k0a,

εr1, µr1, εr3, µr3, and k0d. The electrical dimensions k0a and k0d are regarded as parameters here

instead of their corresponding physical dimensions to simplify the differentiations. Based on

the definition of the total differential,[29] the variability in εeff
r due to its dependent parameters

and their variations is given by

∆εeff
r =

∑
m

∂εeff
r

∂m
∆m (5.6)

where m = k0a, εr1, µr1, εr3, µr3, and k0d. Similarly, the expression for ∆µeff
r can be obtained.

Since the derivative may have a negative sign after simple computation, the absolute value
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of each component variability,
∣∣(∂εeff

r /∂m)∆m
∣∣, is used to describe the worst-case scenario.

Note that the definition of the total differential requires that all of the dependent parameters

are independent. This requirement is met, for the following reasons: i) k0a and k0d are the

geometric parameters so that they have no correlation with the other four material parameters;

ii) due to the fact that spheres and matrix are fabricated independently, k0a and k0d are

independent of one another, and εr1 and µr1 are independent from εr3 and µr3; iii) since there

is no functional relation between εr1 (εr3) and µr1 (µr3), their variations are basically due to

some random effects, such as a small change in temperature, in the synthesis process. So,

εr1 (εr3) and µr1 (µr3) have no correlation with each other. Also note that, according to the

definition of the total differential, it is not required that |∆(k0a)|, |∆εr1|, |∆µr1|, |∆εr3|, |∆µr3|,

and |∆(k0d)| be small.

In Eq. (5.6), the derivatives of εeff
r with respect to different parameters are calculated as

follows. For m = k0a, εr1, µr1, µr3, and k0d,

∂εeff
r

∂m
=

9εr3
(3−Bj)2

∂Bj
∂m

(5.7)

with

∂B1

∂m
= − 6πi

(k0d)3(εr3µr3)1.5

∂bsc1
∂m

(5.8)

for m = k0a, εr1, and µr1; further

∂B1

∂µr3
= − 6πi

(k0d)3(εr3µr3)1.5

[
∂bsc1
∂µr3

− 1.5(µr3)−1bsc1

]
; (5.9)

∂B1

∂(k0d)
=

18πibsc1
(k0d)4(εr3µr3)1.5

. (5.10)

And

∂εeff
r

∂εr3
=

2Bj + 3

3−Bj
+

9εr3
(3−Bj)2

∂Bj
∂εr3

(5.11)

with

∂B1

∂εr3
= − 6πi

(k0d)3(εr3µr3)1.5

[
∂bsc1
∂εr3

− 1.5(εr3)−1bsc1

]
. (5.12)
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To compute ∆µeff
r , the derivatives of µeff

r with respect to different parameters are calculated

as follows. For m = k0a, εr1, µr1, εr3, and k0d,

∂µeff
r

∂m
=

9µr3

(3−Bj)2

∂Bj
∂m

(5.13)

with

∂B1

∂m
= − 6πi

(k0d)3(εr3µr3)1.5

∂asc
1

∂m
(5.14)

for m = k0a, εr1, and µr1; further

∂B1

∂εr3
= − 6πi

(k0d)3(εr3µr3)1.5

[
∂asc

1

∂εr3
− 1.5(εr3)−1asc

1

]
; (5.15)

∂B1

∂(k0d)
=

18πiasc
1

(k0d)4(εr3µr3)1.5
. (5.16)

And

∂µeff
r

∂µr3
=

2Bj + 3

3−Bj
+

9µr3

(3−Bj)2

∂Bj
∂µr3

(5.17)

with

∂B1

∂µr3
= − 6πi

(k0d)3(εr3µr3)1.5

[
∂asc

1

∂µr3
− 1.5(µr3)−1asc

1

]
. (5.18)

In Eqs. (5.7)-(5.18), the derivatives of Mie dipole scattering coefficients, asc
1 and bsc1 , with

respect to different parameters are given in Chapter 4.

5.3.2 Cubic arrays of two different magnetodielectric spheres

Two different magnetodielectric spheres are arranged on a cubic lattice with lattice constant

2d and matrix medium having relative permittivity εr3, and relative permeability µr3, Fig. 5.2.

One set of spheres with radius a1, and relative permittivity εr1, and relative permeability µr1

will be referred to as the “1-spheres”, and the other set of spheres with radius a2, relative

permittivity εr2, and relative permeability µr2 will be referred to as the “2-spheres”. Note

that the arrangement of the two-sphere array shown in Fig. 5.2 is one of the seven different
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Figure 5.2 Two-sphere array and unit cell geometry.

arrangements analyzed in Refs. [26], [30]. The Clausius-Mossotti formula gives identical result

for different arrangements because it accounts for the number of the electric dipoles of the

1-spheres and 2-spheres per unit cell volume, but not for their relative arrangement. Hence,

different arrangements of two-sphere arrays are not taken into account here.

Similar to the case of the cubic arrays of identical magnetodielectric spheres treated in

Sec. 5.3.1, the two-sphere array can also be treated macroscopically as a homogeneous medium

with effective relative permittivity εeff
r and effective relative permeability µeff

r when the lattice

constant is much smaller than the operating wavelength, kd ≤ 0.5.[13], [26] The expression for

εeff
r in the case of the two-sphere arrays is given by Eq. (5.3) with j = 2 and

B2 = − 3πi(bsc11 + bsc12)

(k0d)3(εr3µr3)1.5
, (5.19)

where bsc11 and bsc12 are the Mie electric dipole scattering coefficients of the 1-spheres and 2-

spheres, respectively, given by Eq. (4.2). A similar expression for µeff
r of two-sphere arrays can

be obtained by replacing εr3 and bsc1i (i = 1, 2) in Eqs. (5.3) and (5.19) by µr3 and asc
1i (i = 1, 2),

respectively. asc
1i is the Mie magnetic dipole scattering coefficient given by Eq. (4.1).

The variability of εeff
r and µeff

r is a function of the following parameters and their variations:

k0a1, k0a2, εr1, µr1, εr2, µr2, εr3, µr3, and k0d. Similarly to the case of the arrays of identical

spheres, these parameters are independent. Due to the increased complexity of the system, the

expression for ∆εeff
r in the case of the two-sphere arrays, obtained by total differential of the
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Clausius-Mossotti relations as described above, contains more terms than in the case of arrays

of identical spheres. Referring to Eq. (5.6), now m = k0a1, k0a2, εr1, µr1, εr2, µr2, εr3, µr3, and

k0d. The expression for ∆µeff
r in the case of the two-sphere arrays can be obtained in a similar

way.

The derivatives of εeff
r with respect to different parameters are computed as follows. For

m = k0a1, k0a2, εr1, µr1, εr2, µr2, µr3, and k0d, ∂εeff
r /∂m can be obtained by Eq. (5.7) with

∂B2

∂m
= − 3πi

(k0d)3(εr3µr3)1.5

∂bsc11

∂m
(5.20)

for m = k0a1, εr1, µr1;

∂B2

∂m
= − 3πi

(k0d)3(εr3µr3)1.5

∂bsc12

∂m
(5.21)

for m = k0a2, εr2, µr2; further

∂B2

∂µr3
= − 3πi

(k0d)3(εr3µr3)1.5

[(
∂bsc11

∂µr3
+
∂bsc12

∂µr3

)
− 1.5(µr3)−1(bsc11 + bsc12)

]
; (5.22)

∂B2

∂(k0d)
=

9πi(bsc11 + bsc12)

(k0d)4(εr3µr3)1.5
. (5.23)

∂εeff
r /∂εr3 can be expressed as Eq. (5.11) with

∂B2

∂εr3
= − 3πi

(k0d)3(εr3µr3)1.5

[(
∂bsc11

∂εr3
+
∂bsc12

∂εr3

)
− 1.5(εr3)−1(bsc11 + bsc12)

]
. (5.24)

The derivatives of µeff
r with respect to different parameters are calculated as follows. For

m = k0a1, k0a2, εr1, µr1, εr2, µr2, εr3, and k0d, ∂µeff
r /∂m can be obtained by Eq. (5.13) with

∂B2

∂m
= − 3πi

(k0d)3(εr3µr3)1.5

∂asc
11

∂m
(5.25)

for m = k0a1, εr1, and µr1;

∂B2

∂m
= − 3πi

(k0d)3(εr3µr3)1.5

∂asc
12

∂m
(5.26)

for m = k0a2, εr2, and µr2; further

∂B2

∂εr3
= − 3πi

(k0d)3(εr3µr3)1.5

[(
∂asc

11

∂εr3
+
∂asc

12

∂εr3

)
− 1.5(εr3)−1(asc

11 + asc
12)

]
; (5.27)
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∂B2

∂(k0d)
=

9πi(asc
11 + asc

12)

(k0d)4(εr3µr3)1.5
. (5.28)

∂µeff
r /∂µr3 can be expressed as Eq. (5.17) with

∂B2

∂µr3
= − 3πi

(k0d)3(εr3µr3)1.5

[(
∂asc

11

∂µr3
+
∂asc

12

∂µr3

)
− 1.5(µr3)−1(asc

11 + asc
12)

]
. (5.29)

The derivatives of Mie dipole scattering coefficients asc
11, asc

12, bsc11, and bsc12 with respect to various

parameters are given in Chapter 4.

5.4 Verification

In this section and Sec. 5.5, magnetodielectric spheres in all the cases considered are loss-

less. Although the effective constitutive parameters of a lossless array are real, the Clausius-

Mossotti expressions, Eq. (5.3), give complex effective constitutive parameters for such an

array.[11], [13] Away from the resonance regions, the imaginary parts of the effective consti-

tutive parameters calculated by Clausius-Mossotti expressions are in general small.[11] In the

region of homogenization, kd ≤ 1 and βd ≤ 1 (kd ≤ 0.5 and βd ≤ 0.5) for arrays of identical

spheres (two-sphere arrays), the real parts of the effective constitutive parameters calculated

by Clausius-Mossotti expressions are in good consistent with those, which are real values, com-

puted by Shore-Yaghjian formulas.[11] Hence, in all the cases under study, only the real parts of

the effective constitutive parameters calculated by the Clausius-Mossotti expressions are taken

into account. Further, only the real part of each partial derivative of an effective constitutive

parameter with respect to a parameter in Eq. (5.6) is considered so as to give a real variability

of effective constitutive parameters, eventually.

5.4.1 Clausius-Mossotti formulas

First, the Clausius-Mossotti expressions for the effective constitutive parameters of non-

metallic metamaterials consisting of an array of identical spheres, Eqs. (5.3) and (5.5), and an

array of two types of spheres, Eqs. (5.3) and (5.19), are tested by comparing the dispersion
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diagrams obtained by the following relation,[11]

βd

k0d
=
√
εeff
r µeff

r , (5.30)

with those calculated by MIT Photonic-Bands (MPB).[31] MPB computes fully-vectorial eigen-

modes of Maxwell’s equations with periodic boundary conditions by preconditioned conjugate-

gradient minimization of the block Rayleigh quotient in a plane-wave basis.[31] Since MPB can

only treat dielectric periodic structures, arrays considered in this section are all of dielectric

spheres. Fig. 5.3 shows the dispersion diagram for an array of identical dielectric spheres

Figure 5.3 Comparison of dispersion diagrams for an array of identical spheres, Fig. 5.1,
obtained by formulas presented here, Eqs. (5.3), (5.5), and (5.30), with that cal-
culated by MPB.[31] The 25 lowest bands computed by MPB are shown. In this
calculation, εr1 = 400, µr1 = εr3 = µr3 = 1, and a/d = 0.2672.

whose parameters are chosen to match those of the larger sphere considered in a design ex-

ample given in Refs. [23], [32]. The parameter values are provided in the figure caption. This

array does not support backward wave propagation but, nonetheless, it can be used to test

the effectiveness of the presented Clausius-Mossotti formula. The two-sphere array of Fig. 5.4

is a design example in Refs. [23], [32], which shows backward wave propagation in the vicin-

ity of k0d = 0.8386. As shown in Figs. 5.3 and 5.4, good agreement is achieved between the

calculations of MPB and the formulae presented herein, for these cases. Note that the MPB

result for the two-sphere array, Fig. 5.4, is shown only in the range 0 < βd < π/2, instead of

0 < βd < π, because, in MPB, the lattice constant of this two-sphere array is set to be twice

the separation of adjacent spheres, i.e. d′ = 2d, to guarantee the translational symmetry in the
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Figure 5.4 Comparison of dispersion diagrams for a two-sphere array, Fig. 5.2, obtained by
formulas presented here, Eqs. (5.3), (5.19), and (5.30), with that calculated by
MPB.[31] The 60 lowest bands computed by MPB are shown. In this calculation,
εr1 = εr2 = 400, µr1 = µr2 = εr3 = µr3 = 1, a1/d = 0.187, and a2/d = 0.2672.

x, y, and z directions. This means that the size of the corresponding reciprocal lattice in the

Brillouin zone is halved.[33]

5.4.2 Expressions for the variabilities of effective constitutive parameters

Next, the variabilities of effective constitutive parameters of non-metallic metamaterials

consisting of an array of identical spheres and of a two-sphere array, Eq. (5.6), are tested. In this

section, the non-metallic metamaterials are designed following the design procedure in Ref. [34]

to achieve a DNG behavior in the vicinity of k0d = 0.4, which meets the homogenization criteria

of metamaterials consisting of an array of identical spheres, k0d ≤ 1, and of a two-sphere

array, k0d ≤ 0.5. ∆εeff
r and ∆µeff

r of an array of identical spheres, Fig. 5.5, are computed

by Eq. (5.6) and compared with those calculated by expressions developed by Mathematica.

Good agreement is achieved. Using Mathematica, the derivatives of εeff
r and µeff

r in Eq. (5.6)

are obtained by differentiating Eq. (5.3) with respect to k0a, εr1, µr1, εr3, µr3, and k0d. Note

that the expressions developed by Mathematica are much more cumbersome than the presented

ones. Further, ∆εeff
r and ∆µeff

r of a two-sphere array, Fig. 5.6, are computed by Eq. (5.6)

and compared with those calculated by expressions developed by Mathematica. Again, good

agreement is achieved.
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Figure 5.5 Comparison of variabilities of effective constitutive parameters in the vicinity of
the DNG band (k0d = 0.4) of a metamaterial consisting of an array of identi-
cal spheres, Fig. 5.1, computed by the formula presented herein Eq. (5.6), with
those calculated by expressions developed by Mathematica. In this calculation,
εr1 = µr1 = 23.9, εr3 = µr3 = 1, and a/d = 0.45; ∆m/m = 5% with m = k0a, εr1,
µr1, εr3, µr3, and k0d.

5.5 Results

In this section, the effects of parameter variations on the effective constitutive parameters

are analyzed for three types of non-metallic metamaterials: i) a cubic array of identical mag-

netodielectric spheres; ii) a cubic array of two types of dielectric spheres with equal radius but

different permittivities; and iii) a similar array of two types of dielectric spheres with equal

permittivity but different radii. For each of these, the effect of variation in individual param-

eters is first compared. Then, the effects of different combinations of parameter variations

are analyzed. The two metamaterials studied in Sec. 5.4.2 are used as the reference cases in

Secs. 5.5.1 and 5.5.2, respectively.

5.5.1 Cubic arrays of identical magnetodielectric spheres

Utilizing Eq. (5.6), ∆εeff
r is calculated as one of k0a, εr1, µr1, εr3, µr3, and k0d varies by 5%

from its nominal value, Table 5.1. As shown in Fig. 5.7, variation of k0a has the most

significant effect on ∆εeff
r ; variation of k0d has the second most significant effect on ∆εeff

r over

the lower part of the DNG band studied (k0d ≤ 0.4) and the fourth most significant effect over
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(a) (b)

Figure 5.6 Comparisons of variabilities of effective relative permittivity (a), and permeability
(b), in the vicinity of the DNG band (k0d = 0.4) of a metamaterial consisting of
a two-sphere array, Fig. 5.2, computed by the formula presented herein Eq. (5.6),
with those calculated by expressions developed by Mathematica. In this calcula-
tion, εr1 = 621.1, εr2 = 302.7, µr1 = µr2 = εr3 = µr3 = 1, and a1/d = a2/d = 0.45;
∆m/m = 5% with m = k0a1, εr1, µr1, k0a2, εr2, µr2, εr3, µr3, and k0d.

Table 5.1 The parameter with 5% variation (while others have no variation) in each calculation
of variability of effective constitutive parameters of a non-metallic metamaterial
consisting of an array of identical spheres, Fig. 5.1.

Calculation I II III IV V VI

Parameter k0a εr1 µr1 εr3 µr3 k0d

the higher part of the DNG band studied (k0d ≥ 0.4); variations of εr1 and µr1 have similar

effects on ∆εeff
r , giving rise to the third most significant effects on ∆εeff

r over the lower part

of the DNG band studied (k0d ≤ 0.4) and the second most significant effects over the higher

part of the DNG band studied (k0d ≥ 0.4); whereas variations of εr3 and µr3 have the least

effects on ∆εeff
r . Hence, it is noted that variation in the parameters of the sphere (sphere radius,

permittivity, and permeability) perturb the predicted behavior of the DNG band more strongly

than other parameters of the system. Note that effects of the variations in k0a and k0d on ∆εeff
r

are exactly the same as those on ∆µeff
r since both negative εeff

r and negative µeff
r in the vicinity

of the DNG band are provided by the same magnetodielectric sphere embedded in a simple

cubic lattice, which has only one set of geometric parameters: k0a and k0d.
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Figure 5.7 Variabilities of effective relative permittivity in the vicinity of the DNG band
(k0d = 0.4) of a non-metallic metamaterial consisting of a cubic array of identical
magnetodielectric spheres, Fig. 5.1, in each calculation, Table 5.1. Parameters of
this array are as in Fig. 5.5. The equivalent plot for ∆µeff

r is not shown here since
the only difference is that the effects of variations in εr1, εr3 and those of variations
in µr, µr3 are interchanged.

In practical fabrication, it is expected that a metamaterial consisting of an array of iden-

tical spheres would exhibit a combination of variations in its parameters, due to achievable

fabrication tolerances. To analyze the effects of different combinations of parameter variations

on effective constitutive parameters of the metamaterial in the vicinity of the DNG band, the

following parameter variations are studied, ∆m/m = 0.78%, 3%, and 5% (m = k0a, εr1, µr1,

εr3, µr3, and k0d), where variation of the six parameters are assumed to be equal to each other.

For each of these combinations, ∆εeff
r is calculated from Eq. (5.6). The ideal value of effective

relative permittivity, εeff,idl
r , is computed from Eq. (5.3). Based on these results, the variation

range of εeff
r ,

εeff,idl
r −∆εeff

r < εeff
r < εeff,idl

r + ∆εeff
r , (5.31)

is obtained for each of these combinations, giving the shaded areas in Fig. 5.8. Similarly, the

variation range of µeff
r can be obtained. It can be seen that the variation ranges increase as

the parameter variations increase. According to these results it is seen that the DNG behavior

may be extinguished when ∆m/m ≥ 0.78% (m = k0a, εr1, µr1, εr3, µr3, and k0d).
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Figure 5.8 Ideal values and variation ranges of the effective relative permittivity and per-
meability for a non-metallic metamaterial consisting of a cubic array of identical
magnetodielectric spheres, Fig. 5.1. Dashed line: ideal values of εeff

r and µeff
r ; dark,

medium, and light shaded areas: variation ranges for ∆m/m = 0.78%, 3%, and
5% with m = k0a, εr1, µr1, εr3, µr3, and k0d. Other parameters are as in Fig. 5.5.

5.5.2 Cubic arrays of dielectric spheres with equal radius but two different per-

mittivities

In this section, a similar analysis to that described in Sec. 5.5.1 is performed for an array

of two types of dielectric spheres, with equal radius but different permittivity, arranged on

the nodes of a simple-cubic lattice, Fig. 5.2. As before, the variability of effective constitutive

parameters of the non-metallic metamaterial is computed by Eq. (5.6). In each computation,

one of k0a1, εr1, µr1, k0a2, εr2, µr2, εr3, µr3, and k0d is set to be 5% different from the nominal

value while other parameters have no variation, Table 5.2. The calculated ∆εeff
r and ∆µeff

r

Table 5.2 The parameter with 5% variation (while others have no variation) in each calculation
of variabilities of effective constitutive parameters of a non-metallic metamaterial
consisting of a two-sphere array, Fig. 5.2.

Calculation I II III IV V VI VII VIII IX

Parameter k0a1 εr1 µr1 k0a2 εr2 µr2 εr3 µr3 k0d

are shown in Fig. 5.9. Since the negative εeff
r (µeff

r ) is provided by the first resonance of Mie

electric (magnetic) dipole scattering coefficient of the 1-spheres (2-spheres), their parameter

variations, ∆k0a1, ∆εr1, and ∆µr1 (∆k0a2, ∆εr2, and ∆µr2), have the dominant effects on εeff
r
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(a) (b)

Figure 5.9 Variabilities of effective relative permittivity (a), and permeability (b), in the
vicinity of the DNG band (k0d = 0.4) of a non-metallic metamaterial consisting of
a cubic array of dielectric spheres with equal radius but two different permittivities,
Fig. 5.2, in each calculation, Table 5.2. Parameters of this array are as in Fig. 5.6.

(µeff
r ) in the vicinity of the DNG band. Hence, only the effects of parameter variations of 1-

spheres (2-spheres) on εeff
r (µeff

r ) are shown in Fig. 5.9 and are analyzed in detail. As shown in

Fig. 5.9(a): variation of k0a1 has the most significant effect on ∆εeff
r ; variations of εr1 and µr1

have similar effects on ∆εeff
r , which are less than that of k0a1; variation of k0d has the fourth

most significant effect on ∆εeff
r ; and variations of εr3 and µr3 have the least effects on ∆εeff

r . As

shown in Fig. 5.9(b): variation of k0a2 has the most significant effect on ∆µeff
r ; variations of

εr2 and µr2 have similar effects on ∆µeff
r , which are less than that of k0a2; variations of µr3 and

k0d have similar effects on ∆µeff
r , which are less than those of εr2 and µr2; and variation of εr3

has the least effect on ∆εeff
r .

To analyze the effects of different combinations of parameter variations on εeff
r (µeff

r ) in the

vicinity of the DNG band, the following parameter variations are studied, ∆m/m = 0.016%,

0.03%, and 0.1% (1.2%, 3%, and 5%) with m = k0a1, εr1, µr1, k0a2, εr2, µr2, εr3, µr3, and k0d,

are taken into account. In each case, variations of the nine parameters are assumed equal to

each other. For each of these combinations, the variation range of εeff
r , Eq. (5.31), is obtained,

giving the shaded areas in Fig. 5.10. Similarly, the variation range of µeff
r can be obtained.

It can be seen that the variation ranges increase as the parameter variations increase. The

negative εeff
r (µeff

r ) may be extinguished when ∆m/m ≥ 0.016% (1.2%) with m = k0a1, εr1, µr1,



www.manaraa.com

95

(a) (b)

Figure 5.10 Ideal values and variation ranges of the effective relative permittivity (a), and
permeability (b), for a non-metallic metamaterial consisting of a cubic array of
dielectric spheres with equal radius but two different permittivities, Fig. 5.2,
with six combinations of parameter variations. Dashed line: ideal values of εeff

r

(a), and µeff
r (b); dark, medium, and light shaded areas: variation ranges for

∆m/m = 0.016%, 0.03%, and 0.1% (a), 1.2%, 3%, and 5% (b) with m = k0a1,
εr1, µr1, k0a2, εr2, µr2, εr3, µr3, and k0d. Other parameters are as in Fig. 5.6.

k0a2, εr2, µr2, εr3, µr3, and k0d. Consequently, the DNG behavior may be extinguished when

∆m/m ≥ 0.016%. Note that the negative εeff
r of this metamaterial is much more sensitive to

parameter variations than negative µeff
r . The reason for this is that the first resonance of the

Mie electric dipole scattering coefficient of the set of 1-spheres for which, in this calculation,

εr1 = 621.1 and which provides the negative εeff
r , is narrower than the first resonance of the Mie

magnetic dipole scattering coefficient of the set of 2-spheres (εr2 = 302.7), which provides the

negative µeff
r .

5.5.3 Cubic arrays of dielectric spheres with equal permittivity but two different

radii

Following the design procedure presented in Ref. [34], a non-metallic metamaterial consist-

ing of a cubic array of two types of dielectric spheres with equal permittivity but different radii

is designed with parameters εr1 = εr2 = 621.1, µr1 = µr2 = εr3 = µr3 = 1, a1/d = 0.45, and

a2/d = 0.31, to yield DNG behavior in the vicinity of k0d = 0.4, similar to the behavior of the

metamaterials analyed in Secs. 5.5.1 and 5.5.2.
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Similar to the analysis in the first paragraph of Sec. 5.5.2, the effects of different parameters

are compared for this metamaterial. As shown in Fig. 5.11(a): variation of k0a1 has the most

(a) (b)

Figure 5.11 Variabilities of effective relative permittivity (a), and permeability (b), in the
vicinity of the DNG band (k0d = 0.4) of a non-metallic metamaterial consisting
of a cubic array of dielectric spheres with equal permittivity but two different radii,
Fig. 5.2, in each calculation, Table 5.2. In these calculations, εr1 = εr2 = 621.1,
Xµr1 = µr2 = εr3 = µr3 = 1, a1/d = 0.45, and a2/d = 0.31.

significant effect on ∆εeff
r ; variations of εr1 and µr1 have similar effects on ∆εeff

r , which are less

than that of k0a1; variation of k0d has the fourth most significant effect on ∆εeff
r ; and variations

of εr3 and µr3 have the least effects on ∆εeff
r . As shown in Fig. 5.11(b): variation of k0a2 has the

most significant effect on ∆µeff
r ; variations of εr2 and µr2 have similar effects on ∆µeff

r , which

are less than that of k0a2; variation of µr3 has the fourth most significant effect on ∆µeff
r ; and

variations of εr3 and k0d have the least effects on ∆µeff
r .

Similar to the analysis in the second paragraph of Sec. 5.5.2, the effects of different combi-

nations of parameter variations on εeff
r and µeff

r in the vicinity of the DNG band are investigated

for this metamaterial. As shown in Fig. 5.12, the variation ranges increase as the parameter

variations increase. The negative εeff
r (µeff

r ) may be extinguished when ∆m/m ≥ 0.016% (0.4%)

with m = k0a1, εr1, µr1, k0a2, εr2, µr2, εr3, µr3, and k0d. Hence, the DNG behavior may be

extinguished when ∆m/m ≥ 0.016%. Note that the negative εeff
r of this metamaterial is more

sensitive to parameter variations than negative µeff
r . The reason is that the first resonance of

Mie electric dipole scattering coefficient, which corresponds to 1-spheres (a1/d = 0.45) and
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(a) (b)

Figure 5.12 Ideal values and variation ranges of the effective relative permittivity (a), and
permeability (b), for a non-metallic metamaterial consisting of a cubic array of
dielectric spheres with equal permittivity but two different radii, Fig. 5.2, with six
combinations of parameter variations. Dashed line: ideal values of εeff

r (a), and µeff
r

(b); dark, medium, and light shaded areas: variation ranges for ∆m/m = 0.016%,
0.03%, and 0.1% (a), 0.4%, 1%, and 5% (b) with m = k0a1, εr1, µr1, k0a2, εr2,
µr2, εr3, µr3, and k0d. Other parameters are as in Fig. 5.11.

provides negative εeff
r , is narrower than the first resonance of Mie magnetic dipole scattering

coefficient, which corresponds to 2-spheres (a2/d = 0.31) and provides negative µeff
r .

5.6 Conclusion

Considering constitutive parameters of the array medium, the Clausius-Mossotti relations

have been developed for calculating the effective (bulk) constitutive parameters of two type-

s of non-metallic metamaterials: a cubic array of identical magnetodielectric spheres and a

cubic array of two different dielectric spheres. These relations have been tested by compar-

ing their dispersion diagrams with those calculated by MPB. Analytical expressions describing

the variability of effective constitutive parameters of non-metallic metamaterials, as a function

of the constituent geometric and material parameters and their variations, have been devel-

oped from the total differential of the derived Clausius-Mossotti relations. These expressions

have been verified by comparing their results with those calculated by analytical expressions

developed by Mathematica. In practical fabrication, the presented analysis is important for

predicting the performance of a metamaterial with particular variations in the parameters of
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its constituents, which arise due to achievable tolerance in the fabrication process, and can be

used to guard against extinction of desired DNG behavior. Based on this theory, the effects

of different parameters and of different combinations of parameter variations on effective con-

stitutive parameters have been analyzed for three types of metamaterials: i) cubic arrays of

identical magnetodielectric spheres; ii) cubic arrays of dielectric spheres with equal radius but

two different permittivities; and iii) cubic arrays of dielectric spheres with equal permittivity

but two different radii. These effects are evaluated in terms of the computed variations in

values of the effective constitutive parameters of the metamaterial in the vicinity of the DNG

or SNG band for particular geometric and material parameters and their variations. Results

show that variation in the following parameters impacts DNG bandwidth. In order from most

to least: i) sphere radius; ii) sphere permittivity and permeability; iii) lattice constant of the

array, and iv) the constitutive parameters of the array medium, all impact the width of the

achievable DNG band. For particular cases studied here, results also show that the DNG be-

havior may be extinguished if there are 0.78%, 0.016%, and 0.016% variations in all parameters

of metamaterial types i), ii), and iii), respectively, as defined above. For the design of non-

metallic metamaterials with inclusions, having arbitrary shapes and material parameters, in

either periodic or random arrangement, the presented results can give a qualitative guide on

the level of fabrication tolerances that should be achieved in order to observe SNG or DNG be-

havior experimentally. The extinction of DNG behavior at variances above an extremely tight

fabrication tolerance (0.016%) in all the geometric and material parameters of the particular

cases considered here suggests that fabrication of metamaterial types ii) and iii) may not be

realizable in practice.
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CHAPTER 6. GENERAL CONCLUSIONS

6.1 General Discussion

The work of this thesis is motivated by the need for low-loss, isotropic nonmetallic meta-

materials. Based on the scattering matrix method and point-dipole approximations, Chapter 2

develops dispersion equations for metamaterials consisting of a tetragonal array of two different

magnetodielectric spheres with arbitrary arrangements. These dispersion equations are tested

by comparing their dispersion diagrams with those calculated by MPB. In MPB, fully-vectorial

eigenmodes of Maxwell’s equations with periodic boundary conditions are computed by precon-

ditioned conjugate-gradient minimization of the block Rayleigh quotient in a planewave basis

[1]. The backward wave and DNG bandwidths of 3D periodic arrays with different arrange-

ments of spheres are analyzed for three combinations of sphere types. Based on this analysis,

Chapter 3 presents a rational design procedure for DNG metamaterials consisting of two-sphere

arrays. This procedure can give a design with widest possible DNG bandwidth and desired

effective constitutive parameters at the operating frequency.

To calculate the total differential of variabilities of effective constitutive parameters of non-

metallic metamaterials, Chapter 4 develops analytical expressions for the derivatives of Mie

scattering coefficients with respect to the sphere size, relative permittivity and permeability of

both the sphere and medium. These expressions are verified by comparing their results with

those calculated by analytical expressions developed by Mathematica. Considering the array

medium constitutive parameters, Chapter 5 develops the Clausius-Mossotti relations for effec-

tive (bulk) constitutive parameters of two types of nonmetallic metamaterials: a cubic array of

identical magnetodielectric spheres and a cubic array of two different dielectric spheres. Based

on these relations, analytical expressions of variabilities of effective constitutive parameters
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depending on geometric and material parameter variations are developed using total differen-

tial. The presented Clausius-Mossotti relations have been tested by comparing their dispersion

diagrams with those calculated by MPB. Expressions for variabilities of effective constitutive

parameters are verified by comparing their results with those computed by analytical expres-

sions developed by Mathematica. Effects of different parameters and of different combinations

of parameter variations have been analyzed for three types of metamaterials. These effects are

evaluated in terms of the variabilities in effective constitutive parameters around the DNG or

SNG frequency region for given geometric and material parameters and their variations.

Compared with metal-based metamaterials, non-metallic metamaterials show a much better

performance in the pursuit of isotropy. A 3D array of identical dielectric cubes can achieve

similar SNG behaviors in three different directions, [100], [110], and [111] [2]. On the other hand,

most metal-based metamaterials can show DNG behavior only in some particular directions. An

array of thin wires and SRRs show DNG behavior in the direction parallel to the sample surface

[3]. For an array of metallic cut-wire pairs, the incident wave needs to be normal to the sample

surface [4]-[6]. However, non-metallic metamaterials also have their own intrinsic disadvantages,

such as narrow DNG/SNG bandwidth, which make their experimental implementation quite

challenging. As shown in Table 6.1, the DNG/SNG bandwidths of non-metallic metamaterials

are narrower than those of metal-based metamaterials in the same operation frequency range.

In particular, transmission-line based metamaterials show a much wider DNG bandwidth than

resonant-element based metamaterials since their DNG behavior does not rely on resonant

unit-cells.

6.2 Recommendations for Future Work

In future work, non-metallic metamaterials can be fabricated and characterized based on

the theoretical analysis presented in this thesis. In Table 6.2, magnetodielectric materials po-

tentially useful for fabricating a metamaterial composed of an array of identical spheres in

a frequency range less than 1 GHz are listed. On the other hand, dielectric materials avail-

able for the fabrication of two-sphere arrays are listed for microwave and THz frequencies.

ROHACELL R© 31HF with dielectric constant around 1.05 and loss tangent less than 0.01 in
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Table 6.1 Measured DNG/SNG ranges and bandwidths of different metal-based and
non-metallic metamaterials in X-band

Type Resource Structure DNG/SNG range (GHz) Bandwidth (%)

[3] SRRs & wires [10.2, 10.8]∗ 6

Metal-based [7] SRRs & wires [8.7, 9.9]∗ 13

[8] Transmission-line [10, 12]∗ 18

[2] One-cube array [8.53, 8.85]∗∗ 3.7

Non-metallic [9] Two-rod array [10.6, 11]∗ 4

[10] Cubes & rods [9.97, 10.4]∗ 4.2

*DNG.

**SNG.

Table 6.2 Potential materials for fabrication of inclusions of non-metallic metamaterials

Type Resource Chemical formula εr µr Freq. (GHz)

I∗ [17] Co2Z(Ba3Co2Fe24O41) 12 + 0.03i 12.5 + 4i 1

[17] TT2-101 10.2 + 0.05i 14.6 + 0.4i 0.1

II∗∗ [2] Ba0.5Sr0.5TiO3 1600 + 4.8i - 3-18

[14] SrTiO3 323 + 10−4i - 8-12

[9] BaxSr1−xTi1−yMnyO3 575 + 3.45i - 8-12

[18] La15/8Sr1/8NiO4 > 100∗∗∗ - < 104

[10] Ba0.6Sr0.4TiO3-La(Mg0.5-Ti0.5)O3 103 + 0.165i - 8-12

*Magnetodielectric.

**Dielectric.

***ε′′r is unknown above 330 MHz at room temperature.

the frequency range 2.5 to 26.5 GHz can be used to fabricate the matrix [11]. For the charac-

terization, there are two widely used measurement systems: free-space [12], [15] and waveguide

measurement systems [2], [9], [10], [13], [14], [16]. The latter approach is preferable since it

requires a smaller sample and simpler measurement configuration.
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